Change search
ReferencesLink to record
Permanent link

Direct link
Terrain Mapping Near the Vehicle, SLAM and Global Map Building for Lunar Rover
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

There has been increasing interest to go back to the moon in the recent past because of various scientific and socio-economic reasons. In order to go back to the moon there is a need to study the lunar environment. Although having a permanent mission outpost on the moon is the final goal it is better to send mobile rovers to the surface of the moon first to study lunar environment before starting the human missions to moon again. With the increasing autonomous mobility of the lunar rovers some aspects become increasingly important namely localization, navigation and mapping. Although the two-dimensional localization and mapping algorithms are becoming more and more mature for indoor mobile robotics, they cannot be used, as is, for autonomous lunar rovers. The terrain on the Moon is not even and would have various kinds of obstacles for the rovers to manoeuvre and traverse. Moreover, environmental features like walls and corners are not available in the environment in which the rovers would have to navigate. In such environments it becomes important for the rover to have the ability to map its surrounding in three dimensions. Although LIDAR based systems have not been widely used on actual lunar missions for mapping yet, they have the advantage of being more accurate and long-range. The focus of this thesis would be to develop and equip a lunar rover prototype with the three-dimensional terrain mapping ability using LIDAR sensor which would help the rover to traverse its environment without collisions. A three-dimensional point cloud was used to map the environment using the Iterative Closest Point(ICP) algorithm.

Place, publisher, year, edition, pages
2013. , 67 p.
Keyword [en]
Keyword [sv]
URN: urn:nbn:se:ltu:diva-42017Local ID: 01730e5c-d549-453b-bf5b-767ea120a9caOAI: diva2:1015233
External cooperation
Subject / course
Student thesis, at least 30 credits
Educational program
Space Engineering, master's level
Validerat; 20131031 (global_studentproject_submitter)Available from: 2016-10-04 Created: 2016-10-04Bibliographically approved

Open Access in DiVA

fulltext(4119 kB)1 downloads
File information
File name FULLTEXT02.pdfFile size 4119 kBChecksum SHA-512
Type fulltextMimetype application/pdf
fulltext(230 kB)0 downloads
File information
File name FULLTEXT03.jpgFile size 230 kBChecksum SHA-512
Type fulltextMimetype image/jpeg
fulltext(120 kB)0 downloads
File information
File name FULLTEXT04.jpgFile size 120 kBChecksum SHA-512
Type fulltextMimetype image/jpeg
fulltext(258 kB)0 downloads
File information
File name FULLTEXT05.jpgFile size 258 kBChecksum SHA-512
Type fulltextMimetype image/jpeg

Search in DiVA

By author/editor
Rajendraprakash, Anuraj

Search outside of DiVA

GoogleGoogle Scholar
Total: 1 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link