Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A beta PP processing results in greater toxicity per amount of A beta(1-42) than individually expressed and secreted A beta(1-42) in Drosophila melanogaster
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
2016 (English)In: BIOLOGY OPEN, ISSN 2046-6390, Vol. 5, no 8, 1030-1039 p.Article in journal (Refereed) Published
Abstract [en]

The aggregation of the amyloid-beta (A beta) peptide into fibrillar deposits has long been considered the key neuropathological hallmark of Alzheimers disease (AD). A beta peptides are generated from proteolytic processing of the transmembrane A beta precursor protein (A beta PP) via sequential proteolysis through the beta-secretase activity of beta-site A beta PP-cleaving enzyme (BACE1) and by the intramembranous enzyme gamma-secretase. For over a decade, Drosophila melanogaster has been used as a model organism to study AD, and two different approaches have been developed to investigate the toxicity caused by AD-associated gene products in vivo. In one model, the A beta peptide is directly over-expressed fused to a signal peptide, allowing secretion of the peptide into the extracellular space. In the other model, human A beta PP is co-expressed with human BACE1, resulting in production of the A beta peptide through the processing of A beta PP by BACE1 and by endogenous fly gamma-secretase. Here, we performed a parallel study of flies that expressed the A beta(1-42) peptide alone or that co-expressed A beta PP and BACE1. Toxic effects (assessed by eye phenotype, longevity and locomotor assays) and levels of the A beta(1-42), A beta(1-40) and A beta(1-38) peptides were examined. Our data reveal that the toxic effect per amount of detected A beta(1-42) peptide was higher in the flies co-expressing A beta PP and BACE1 than in the A beta(1-42)-expressing flies, and that the co-existence of A beta(1-42) and A beta(1-40) in the flies co-expressing A beta PP and BACE1 could be of significant importance to the neurotoxic effect detected in these flies. Thus, the toxicity detected in these two fly models seems to have different modes of action and is highly dependent on how and where the peptide is generated rather than on the actual level of the A beta(1-42) peptide in the flies. This is important knowledge that needs to be taken into consideration when using Drosophila models to investigate disease mechanisms or therapeutic strategies in AD research.

Place, publisher, year, edition, pages
COMPANY OF BIOLOGISTS LTD , 2016. Vol. 5, no 8, 1030-1039 p.
Keyword [en]
Alzheimers disease; Amyloid-beta (A beta); A beta PP processing; Drosophila melanogaster; Proteotoxicity
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:liu:diva-131685DOI: 10.1242/bio.017194ISI: 000382304400003PubMedID: 27387531OAI: oai:DiVA.org:liu-131685DiVA: diva2:1014864
Note

Funding Agencies|Torsten Soderbergs Stiftelse [M26/11]; Alzheimer Foundation [03-069]; Dementia Foundation; Ahlen Foundation; Gamla Tjanarinnor [2015-00187]

Available from: 2016-10-03 Created: 2016-09-30 Last updated: 2017-05-16
In thesis
1. Amyloid-β and lysozyme proteotoxicity in Drosophila: Beneficial effects of lysozyme and serum amyloid P component in models of Alzheimer’s disease and lysozyme amyloidosis
Open this publication in new window or tab >>Amyloid-β and lysozyme proteotoxicity in Drosophila: Beneficial effects of lysozyme and serum amyloid P component in models of Alzheimer’s disease and lysozyme amyloidosis
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the work presented this thesis, two different conditions that are classified as protein misfolding diseases: Alzheimer's disease and lysozyme amyloidosis and proteins that could have a beneficial effect in these diseases, have been studied using Drosophila melanogaster, commonly known as the fruit fly. The fruit fly has been used for over 100 years to study and better understand fundamental biological processes. Although the fruit fly, unlike humans, is an invertebrate, many of its central biological mechanisms are very similar to ours. The first transgenic flies were designed in the early 1980s, and since then, the fruit fly has been one of the most widely used model organisms in studies on the effects of over-expressed human proteins in a biological system; one can regard the fly as a living, biological test tube. For  most proteins, it is necessary that they fold into a three-dimensional structure to function properly. But sometimes the folding goes wrong; this may be due to mutations that make the protein unstable and subject to misfolding. A misfolded protein molecule can then aggregate with other misfolded proteins. In Alzheimer's disease, which is the most common form of dementia, protein aggregates are present in the brains of patients. These aggregates are composed of the amyloid-β (Aβ) peptide, a small peptide of around 42 amino acids which is cleaved from the larger, membrane-bound, protein AβPP by two different enzymes, BACE1 and γ-secretase. In the first part of this thesis, two different fly models for Alzheimer’s disease were used: the Aβ fly model, which directly expresses the Aβ peptide, and the AβPP-BACE1 fly model, in which all the components necessary to produce the Aβ peptide in the fly are expressed in the fly central nervous system (CNS). The two different fly models were compared and the results show that a significantly smaller amount of the Aβ peptide is needed to achieve the same, or an even greater, toxic effect in the AβPP-BACE1 model compared to the Aβ model. In the second part of the thesis, these two fly models for Alzheimer’s disease were again used, but now to investigate whether lysozyme, a protein involved in our innate immune system, can counteract the toxic effect of Aβ generated in the fly models. And indeed, lysozyme is able to save the flies from Aβ-induced toxicity. Aβ and lysozyme were found to interact with each other in vivo. The second misfolding disease studied in this thesis is lysozyme amyloidosis. It is a rare, dominantly inherited amyloid disease in which mutant variants of lysozyme give rise to aggregates, weighing up to several kilograms, that accumulate around the kidneys and liver, eventually leading to organ failure. In the third part of this thesis, a fly model for lysozyme amyloidosis was used to study the effect of co-expressing the serum amyloid P component (SAP), a protein that is part of all protein aggregates found within this disease class. SAP is able to rescue the toxicity induced by expressing the mutant variant of lysozyme, F57I, in the fly's CNS. To further investigate how SAP was able to do this, double-expressing lysozyme flies, which exhibit stronger disease phenotypes than those of the single-expressing lysozyme flies previously studied, were used in the fourth part of this thesis. SAP was observed to reduce F57I toxicity and promote F57I to form aggregates with more distinct amyloid characteristics. In conclusion, the work included in this thesis demonstrates that: i) Aβ generated from AβPP processing in the fly CNS results in higher proteotoxicity compared with direct expression of Aβ from the transgene, ii) lysozyme can prevent Aβ proteotoxicity in Drosophila and could thus be a potential therapeutic molecule to treat Alzheimer’s disease and iii) in a Drosophila model of lysozyme amyloidosis, SAP can prevent toxicity from the disease-associated lysozyme variant F57I and promote formation of aggregated lysozyme morphotypes with amyloid properties; this is important to take into account when a reduced level of SAP is considered as a treatment strategy for lysozyme amyloidosis.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. 91 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1861
National Category
Biochemistry and Molecular Biology Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Biophysics Medicinal Chemistry
Identifiers
urn:nbn:se:liu:diva-137452 (URN)10.3384/diss.diva-137452 (DOI)9789176855065 (ISBN)
Public defence
2017-06-17, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2017-05-16 Created: 2017-05-16 Last updated: 2017-05-17Bibliographically approved

Open Access in DiVA

fulltext(876 kB)20 downloads
File information
File name FULLTEXT01.pdfFile size 876 kBChecksum SHA-512
9e9b37c887742bb86a6197aa3f0d05ba7fd69ac9ae343e6928ce2067a04ea6f4fd9a867448463210d704b466d56e111db00addf55fc642814006810937576c14
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Bergkvist, LizaSandin, LinneaKågedal, KatarinaBrorsson, Ann-Christin
By organisation
ChemistryFaculty of Science & EngineeringDivision of Cell BiologyFaculty of Medicine and Health Sciences
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar
Total: 20 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 114 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf