Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Seasonal groundwater turnover in the north and south of Sweden
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.ORCID iD: 0000-0001-7144-9778
2007 (English)Conference paper, Oral presentation only (Other academic)
Abstract [en]

Nutrient leakage from agricultural areas in Sweden mainly occurs during the autumn in the south and during the spring in the north. The infiltration of nutrients also reaches greater depths in the south. An occurring “seasonal groundwater turnover” similar to that in lakes is the suggested mechanism. This thermal convection results from changing temperatures (densities). The 10oC groundwater in southern Sweden becomes denser as it is cooled from the surface in the autumn, while the corresponding convection in the North occurs during the spring. Performed simulations show how seasonal temperature variations, under certain conditions, initiate and drive thermal convection.

Place, publisher, year, edition, pages
2007.
National Category
Water Engineering
Research subject
Water Resources Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-39243Local ID: de452dcd-a627-4023-865a-de0f283e4db5OAI: oai:DiVA.org:ltu-39243DiVA: diva2:1012753
Conference
International Workshop on Natural Energies : 03/08/2007 - 05/08/2007
Note
Godkänd; 2007; 20121107 (bon)Available from: 2016-10-03 Created: 2016-10-03 Last updated: 2017-11-25Bibliographically approved
In thesis
1. Secondary currents in groundwater
Open this publication in new window or tab >>Secondary currents in groundwater
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The thesis concerns the small vertical water movements created by thermal convection and the Coriolis force acting on groundwater flows. These small flows are of importance to vertical transports of temperature, nutrients and contaminants that would not be spread in the way they are. The first part analyzes thermally driven, seasonal groundwater convection by numerical simulation. The second part shows that the Coriolis force also induces secondary currents in groundwater flow through different vertical permeability distributions. Density driven convection occurs during the autumn in southern Sweden when the ambient air temperature cools the mean groundwater temperature from about 10ºC. When the shallow groundwater is cooled by the ambient air its increased density makes this water sink, slowly increasing in temperature, while pressing the warmer water upwards creating a convection cell. The process is ongoing as long as there is a thermal gradient between ground surface and the groundwater. Under favorable conditions convection can reach a depth of 6m. Such density-driven water movements occur most easily in more permeable soil. In northern Sweden, the situation is reversed, since the mean groundwater temperature is below 4ºC, at which water is at its density maximum. So, in springtime when the uppermost groundwater is heated to 4ºC by the warmer air the convection process starts. Here, the sinking groundwater does not reach the same depth, less than one meter. The Coriolis force has been considered too small to have any effect on groundwater flow, though its importance in meteorology and oceanography is well established. These theories have been applied using numerical simulations of groundwater flow. The numerical model has been validated by simulating some earlier studies of Coriolis forces in fluids. Furthermore the model has been extended to include porous media. It has been shown that secondary currents occur in nonlinear vertical permeability distributions. For simulations of constant and linear distributions no secondary currents have been seen. The development is more pronounced in confined aquifers. The structure of the bottom of the aquifer  affects  how the secondary currents arise. It was shown that both temperature gradients and the Coriolis force form secondary currents in groundwater and a general conclusion is that groundwater flow is more complex than previously assumed.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2017. p. 70
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Keyword
Groundwater
National Category
Oceanography, Hydrology and Water Resources
Research subject
Water Resources Engineering
Identifiers
urn:nbn:se:ltu:diva-66411 (URN)978-91-7790-006-1 (ISBN)978-91-7790-007-8 (ISBN)
Public defence
2017-12-15, F1031, Luleå, 10:00 (English)
Opponent
Supervisors
Available from: 2017-11-14 Created: 2017-11-11 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(137 kB)28 downloads
File information
File name FULLTEXT01.pdfFile size 137 kBChecksum SHA-512
76c9934337f947d2e2f440e2e9adaa7b8275ee8386b79eb1ec274ef364b07251f76b83a5525d206b0abc0f445e095e162442a4d1a2995e778116ed9cc2f7d3a8
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Engström, MariaNordell, Bo
By organisation
Architecture and Water
Water Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 28 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf