References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A robust and fast algorithm for computing exact and approximate shortest visiting routesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2004 (English)In: Computational Science and Its Applications - ICCSA 2004 International Conference, Proceedings, Encyclopedia of Global Archaeology/Springer Verlag, 2004, Vol. Part III, 168-177 p.Conference paper (Refereed)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Encyclopedia of Global Archaeology/Springer Verlag, 2004. Vol. Part III, 168-177 p.
##### Series

Lecture Notes in Computer Science, ISSN 0302-9743 ; 3045
##### Research subject

Dependable Communication and Computation Systems
##### Identifiers

URN: urn:nbn:se:ltu:diva-32392DOI: 10.1007/b98053Local ID: 6e46f710-a0de-11db-8975-000ea68e967bISBN: 978-3-540-22057-2OAI: oai:DiVA.org:ltu-32392DiVA: diva2:1005626
##### Conference

Computational Science and Its Applications - ICCSA 2004 International Conference : 14/05/2004 - 17/05/2004
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt384",{id:"formSmash:j_idt384",widgetVar:"widget_formSmash_j_idt384",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt390",{id:"formSmash:j_idt390",widgetVar:"widget_formSmash_j_idt390",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt396",{id:"formSmash:j_idt396",widgetVar:"widget_formSmash_j_idt396",multiple:true});
##### Note

Validerad; 2004; 20070110 (ysko)Available from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Given a simple n-sided polygon in the plane with a boundary partitioned into subchains some of which are convex and colored, we consider the following problem: Which is the shortest route (closed path) contained in the polygon that passes through a given point on the boundary and intersects at least one vertex in each of the colored subchains? We present an optimal algorithm that solves this problem in O(n) time. Previously it was known how to solve the problem optimally when each colored subchain contains one vertex only. Moreover, we show that a solution computed by the algorithm is at most a factor times longer than the overall shortest route that intersects the subchains (not just at vertices) if the minimal distance between vertices of different subchains is at least c times the maximal length of an edge of a subchain. Without such a bound its length can be arbitrarily longer. Furthermore, it is known that algorithms for computing such overall shortest routes suffer from numerical problems. Our algorithm is not subject to such problems.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1123",{id:"formSmash:lower:j_idt1123",widgetVar:"widget_formSmash_lower_j_idt1123",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1124_j_idt1126",{id:"formSmash:lower:j_idt1124:j_idt1126",widgetVar:"widget_formSmash_lower_j_idt1124_j_idt1126",target:"formSmash:lower:j_idt1124:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});