Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Elimination and recovery of antimony from copper resources
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
2013 (English)Conference paper, Oral presentation only (Refereed)
Abstract [en]

In a response to the recent growth in the global demand for copper products, mining industries have intensified in their mining operations. Unfortunately, the grade of copper ore concentrates mined today is declining due to the intensive mining of the relatively high grade copper resources. Therefore, future copper ore deposits to be mined are likely to be richer in impurity elements like antimony and arsenic which attract smelter’s penalty if the content of these impurities is too high. It is however imperative to selectively eliminate and recover the antimony impurity of the copper concentrates in an environmentally friendly process with a view of upgrading the concentrates for a pyrometallurgical processing.This paper discusses the alkaline sulphide hydrometallurgical technology to selectively solubilize antimony impurity from a copper concentrate. The effect of sodium sulphide and sodium hydroxide concentrations, leaching time and leaching temperature on antimony dissolution will be examined. Furthermore, antimony recovery as a marketable product from simulated pregnant leach liquor through electrodeposition will be discussed. Various experimental factors that influence antimony deposition from alkaline sulphide electrolyte are reported.

Place, publisher, year, edition, pages
2013.
Keyword [en]
Chemical engineering - Metallurgical process and manufacturing engineering
Keyword [sv]
Kemiteknik - Metallurgisk process- och produktionsteknik
National Category
Metallurgy and Metallic Materials
Research subject
Process Metallurgy
Identifiers
URN: urn:nbn:se:ltu:diva-29304Local ID: 2bc15983-7dbc-463e-9c19-186000bf0367OAI: oai:DiVA.org:ltu-29304DiVA: diva2:1002527
Conference
International Conference "By-Product Metals in the Non-Ferrous Metal Industry" : 15/05/2013 - 17/05/2013
Note
Godkänd; 2013; 20130626 (andbra)Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2017-11-25Bibliographically approved

Open Access in DiVA

fulltext(278 kB)