Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Steady and transient pressure measurements on the runner blades of a Kaplan turbine model
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.ORCID iD: 0000-0001-5143-7729
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.ORCID iD: 0000-0001-7599-0895
2015 (English)Conference paper, Oral presentation only (Refereed)
Abstract [en]

The development of renewable energy sources has increased the need for power regulation. Power system regulation is mainly performed by hydropower plants through load variations. Additional forces are exerted on the runner blades during these load variations. This paper deals with pressure measurement performed on the blades of a Kaplan turbine model under steady state and load variation conditions. Flow behavior and frequency content of the pressure are investigated and compared to find critical condition in terms of pressure fluctuation. The results show that at various operating points and conditions, different regions of the blade are important. During load rejection, a considerable amount of pressure fluctuations are exerted on the runner blades. These results will be used to define experiments to be performed on the corresponding prototype. On the prototype, the loads acting on the runner blades will be investigated at various operation points similar to the model. In addition, the relation between the frequency content on the blades and loads on the main shaft will be investigated. Comparing results from model and prototype eventually would be valuable to explore the flow characteristics in prototype since CFD simulation of prototype is challenging.

Place, publisher, year, edition, pages
2015.
National Category
Fluid Mechanics and Acoustics
Research subject
Fluid Mechanics
Identifiers
URN: urn:nbn:se:ltu:diva-26989Local ID: 0483c990-33a4-4860-b187-6204b09379e3OAI: oai:DiVA.org:ltu-26989DiVA: diva2:1000170
Conference
IAHR meeting of the Working Group “Cavitation and dynamic problems" : 09/09/2015 - 11/09/2015
Note
Godkänd; 2015; 20150918 (arasol)Available from: 2016-09-30 Created: 2016-09-30 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

fulltext(451 kB)256 downloads
File information
File name FULLTEXT01.pdfFile size 451 kBChecksum SHA-512
82113f1ee2f59a5aed6a6c3195e509fa3cebb14ae6104a808361f4a14a068175de91dc7a375ddaadc212e8addfe5a0f89d94737d9d62a5b1334dcf8a8c25096b
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Dehkharqani, Arash SoltaniAmiri, KavehCervantes, Michel
By organisation
Fluid and Experimental Mechanics
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
Total: 256 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 391 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf