Change search
ReferencesLink to record
Permanent link

Direct link
Modeling of coal compaction within stamp-charged cokemaking by means of computational physics
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
Technical University Berlin.
2012 (English)In: XXVI International Mineral Processing Congress: IMPC 2012, New Delhi, India, September 24-28, 2012 : conference proceedings, New Dehli: The Indian Institute of Metals , 2012, Vol. 1, 4696-4706 p.Conference paper (Refereed)
Abstract [en]

Within stamp-charged coke making, a large volume of coal is compacted to one single coal cake before entering the coke oven chamber. This is done by means of several falling stampers in a stamping machine having a mold nearly of the oven’s dimensions. Producing a high quality coke from inferior coals requires a cake density of approximately 80% of the coal density. Besides this, the industrial stamp-charging process demands a minimum mechanical strength of the coal cake to move it from the stamping mold into the oven chamber without failure. Densification and the build up of cake strength were investigated earlier in stamping tests using a micro-stamping device. The quantities derived from these tests (as e.g. cake density or porosity) represent average values for the entire cake. Statements describing the local compaction state at different heights are difficult to achieve without destructing the cake. In order to gain better insight into the densification process and the inner structure of the coal cake, a computational model based on the Discrete Element Method (DEM) was set up using 2 and also 3-dimensional simulation software. The stamper’s position and velocity as well as the force acting on the stamper were monitored and the model’s response was compared against measurement data from laboratory stamping tests. It was possible to reproduce the force and displacement pattern of the stamper in response to the viscoelastic properties of the cake using standard DEM bonding and contact models. Furthermore, the rearrangement of particles in response to the compaction by the stamper was tracked by calculating their displacement at the point the stamper hit the coal surface. The latter can also be used as an indicator of particle deformation or breakage. By defining control points at different heights the particle displacement, stress and strain rates, porosity could be studied at different heights.

Place, publisher, year, edition, pages
New Dehli: The Indian Institute of Metals , 2012. Vol. 1, 4696-4706 p.
Research subject
Mineral Processing
URN: urn:nbn:se:ltu:diva-26874Local ID: 021e1a7d-4914-4d49-b72d-991990543d3bISBN: 9788190171434OAI: diva2:1000054
International Mineral Processing Congress : 24/09/2012 - 28/09/2012
Godkänd; 2012; 20121227 (ysko)Available from: 2016-09-30 Created: 2016-09-30Bibliographically approved

Open Access in DiVA

fulltext(1017 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 1017 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Sand, AndersRosenkranz, Jan
By organisation
Sustainable Process Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1 hits
ReferencesLink to record
Permanent link

Direct link