Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A method for remote sensing of weak planetary magnetic fields: Simulated application to Mars
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
Swedish Institute of Space Physics / Institutet för rymdfysik.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.ORCID iD: 0000-0001-6389-1160
Show others and affiliations
2013 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 40, no 19, 5014-5018 p.Article in journal (Refereed) Published
Abstract [en]

We present a method for characterizing the magnetic anomalies from the crustal fields in the lower atmosphere of Mars that requires two perpendicular linear polarization measurements of the Zeeman effect. The maximum effect of the magnetic field on the signal is found at the Doppler broadening width at low pressures rather than at the magnetically induced line frequency shift, and the effect strongly increases with increasing magnetic field strength. Based on simulations of the Zeeman-affected spectral cross section of the 119 GHz O2 line in a model Martian atmosphere at various magnetic field strengths, we conclude that it should be possible to probe the strength of the magnetic anomalies remotely with presently available technology. We discuss limitations of the method, how these results could be relevant to the interpretation of residuals in Herschel/HIFI observations of Mars, as well as the application to detection of exoplanetary magnetic fields.

Place, publisher, year, edition, pages
2013. Vol. 40, no 19, 5014-5018 p.
National Category
Aerospace Engineering
Research subject
Space Technology
Identifiers
URN: urn:nbn:se:ltu:diva-15186DOI: 10.1002/grl.50964Local ID: eacdd49f-739e-48d3-b562-90021db9e1b6OAI: oai:DiVA.org:ltu-15186DiVA: diva2:988159
Note
Validerad; 2013; 20131003 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-10-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Larsson, RichardMendrok, JanaBuehler, Stefan
By organisation
Space Technology
In the same journal
Geophysical Research Letters
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf