Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental verification of a combi-bearing model for vertical rotor systems
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mechanics of Solid Materials.
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mechanics of Solid Materials.ORCID iD: 0000-0001-6016-6342
Vattenfall Research & Development.
2013 (English)In: Journal of Vibration and Acoustics-Transactions of the ASME, ISSN 1048-9002, E-ISSN 1528-8927, Vol. 135, no 3Article in journal (Refereed) Published
Abstract [en]

Combi-bearing is a combined thrust-journal bearing design used in vertical hydropower rotors. The dynamic characteristics of this component (combi-bearing) were analytically modeled by Luneno et al. (2011, "Model Based Analysis of Coupled Vibrations Due to the Combi-Bearing in Vertical Hydroturbogenerator Rotors," ASME J. Vib. Acoust., 133, p. 061012). This analytic model was inserted into a finite element model of a vertical rotor rig and numerically simulated. In this paper, the simulated vertical rotorbearings system is a small-scale vertical machine constructed to validate the analytically derived combi-bearing model. Good agreement was found between the simulation and experimental results. The simulation and experimental results showed that the journal (radial) bearing's position relative to the contact point between the combi-bearing's collar and the rotor influences the rotor system's fundamental natural frequencies. Therefore, the combi-bearing model needs to be included into rotor dynamic models. Neglecting the effect of this component may cause significant errors in the predicted results. Copyright

Place, publisher, year, edition, pages
2013. Vol. 135, no 3
National Category
Applied Mechanics
Research subject
Solid Mechanics
Identifiers
URN: urn:nbn:se:ltu:diva-5213DOI: 10.1115/1.4023052ISI: 000326028700018Scopus ID: 2-s2.0-84877677015Local ID: 34166b69-2787-43a5-a66c-0b5a9700169cOAI: oai:DiVA.org:ltu-5213DiVA, id: diva2:978087
Note
Validerad; 2013; Bibliografisk uppgift: Article number 034501; 20130522 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Luneno, Jean-ClaudeAidanpää, Jan-Olov
By organisation
Mechanics of Solid Materials
In the same journal
Journal of Vibration and Acoustics-Transactions of the ASME
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf