Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
2007 (engelsk)Inngår i: Biotechnology progress (Print), ISSN 8756-7938, E-ISSN 1520-6033, Vol. 23, nr 2, s. 381-388Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Succinic acid (SA) is an important platform molecule in the synthesis of a number of commodity and specialty chemicals. In the present work, dual-phase batch fermentations with the E. coli strain AFP184 were performed using a medium suited for large-scale industrial production of SA. The ability of the strain to ferment different sugars was investigated. The sugars studied were sucrose, glucose, fructose, xylose, and equal mixtures of glucose and fructose and glucose and xylose at a total initial sugar concentration of 100 g L-1. AFP184 was able to utilize all sugars and sugar combinations except sucrose for biomass generation and succinate production. For sucrose as a substrate no succinic acid was produced and none of the sucrose was metabolized. The succinic acid yield from glucose (0.83 g succinic acid per gram glucose consumed anaerobically) was higher than the yield from fructose (0.66 g g-1). When using xylose as a carbon source, a yield of 0.50 g g-1 was obtained. In the mixed-sugar fermentations no catabolite repression was detected. Mixtures of glucose and xylose resulted in higher yields (0.60 g g-1) than use of xylose alone. Fermenting glucose mixed with fructose gave a lower yield (0.58 g g-1) than fructose used as the sole carbon source. The reason is an increased pyruvate production. The pyruvate concentration decreased later in the fermentation. Final succinic acid concentrations were in the range of 25-40 g L-1. Acetic and pyruvic acid were the only other products detected and accumulated to concentrations of 2.7-6.7 and 0-2.7 g L-1. Production of succinic acid decreased when organic acid concentrations reached approximately 30 g L-1. This study demonstrates that E. coli strain AFP184 is able to produce succinic acid in a low cost medium from a variety of sugars with only small amounts of byproducts formed.

sted, utgiver, år, opplag, sider
2007. Vol. 23, nr 2, s. 381-388
HSV kategori
Forskningsprogram
Biokemisk processteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-4736DOI: 10.1021/bp060301yISI: 000245510000012Scopus ID: 2-s2.0-34247224896Lokal ID: 2ba81400-fd2e-11db-b816-000ea68e967bOAI: oai:DiVA.org:ltu-4736DiVA, id: diva2:977610
Merknad
Validerad; 2007; 20070508 (ulrok)Tilgjengelig fra: 2016-09-29 Laget: 2016-09-29 Sist oppdatert: 2018-07-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Andersson, ChristianHodge, DavidBerglund, KrisRova, Ulrika
Av organisasjonen
I samme tidsskrift
Biotechnology progress (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 455 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf