Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Free Look UGV Teleoperation Control Tested in Game Environment: Enhanced Performance and Reduced Workload
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0002-0483-8391
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.ORCID-id: 0000-0002-6716-1111
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: International Symposium on Safety,Security and Rescue Robotics, 2016Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Concurrent telecontrol of the chassis and camera ofan Unmanned Ground Vehicle (UGV) is a demanding task forUrban Search and Rescue (USAR) teams. The standard way ofcontrolling UGVs is called Tank Control (TC), but there is reasonto believe that Free Look Control (FLC), a control mode used ingames, could reduce this load substantially by decoupling, andproviding separate controls for, camera translation and rotation.The general hypothesis is that FLC (1) reduces robot operators’workload and (2) enhances their performance for dynamic andtime-critical USAR scenarios. A game-based environment wasset-up to systematically compare FLC with TC in two typicalsearch and rescue tasks: navigation and exploration. The resultsshow that FLC improves mission performance in both exploration(search) and path following (navigation) scenarios. In the former,more objects were found, and in the latter shorter navigationtimes were achieved. FLC also caused lower workload and stresslevels in both scenarios, without inducing a significant differencein the number of collisions. Finally, FLC was preferred by 75% of the subjects for exploration, and 56% for path following.

Ort, förlag, år, upplaga, sidor
2016.
Nyckelord [en]
Teleoperation, UGV, Search and Rescue, First Response, Disaster Response, FPS, Computer Game
Nationell ämneskategori
Robotteknik och automation
Forskningsämne
Datalogi
Identifikatorer
URN: urn:nbn:se:kth:diva-192941DOI: 10.1109/SSRR.2016.7784321ISI: 000391310800053Scopus ID: 2-s2.0-85009804146OAI: oai:DiVA.org:kth-192941DiVA, id: diva2:974494
Konferens
International Symposium on Safety, Security and Rescue Robotics, Lausanne, October 23-27th, 2016
Projekt
TRADR
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, FP7-ICT-609763
Anmärkning

QC 20161212

Tillgänglig från: 2016-09-26 Skapad: 2016-09-23 Senast uppdaterad: 2018-04-11Bibliografiskt granskad
Ingår i avhandling
1. Enhancing geometric maps through environmental interactions
Öppna denna publikation i ny flik eller fönster >>Enhancing geometric maps through environmental interactions
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The deployment of rescue robots in real operations is becoming increasingly commonthanks to recent advances in AI technologies and high performance hardware. Rescue robots can now operate for extended period of time, cover wider areas andprocess larger amounts of sensory information making them considerably more usefulduring real life threatening situations, including both natural or man-made disasters.

In this thesis we present results of our research which focuses on investigating ways of enhancing visual perception for Unmanned Ground Vehicles (UGVs) through environmental interactions using different sensory systems, such as tactile sensors and wireless receivers.

We argue that a geometric representation of the robot surroundings built upon vision data only, may not suffice in overcoming challenging scenarios, and show that robot interactions with the environment can provide a rich layer of new information that needs to be suitably represented and merged into the cognitive world model. Visual perception for mobile ground vehicles is one of the fundamental problems in rescue robotics. Phenomena such as rain, fog, darkness, dust, smoke and fire heavily influence the performance of visual sensors, and often result in highly noisy data, leading to unreliable or incomplete maps.

We address this problem through a collection of studies and structure the thesis as follow:Firstly, we give an overview of the Search & Rescue (SAR) robotics field, and discuss scenarios, hardware and related scientific questions.Secondly, we focus on the problems of control and communication. Mobile robotsrequire stable communication with the base station to exchange valuable information. Communication loss often presents a significant mission risk and disconnected robotsare either abandoned, or autonomously try to back-trace their way to the base station. We show how non-visual environmental properties (e.g. the WiFi signal distribution) can be efficiently modeled using probabilistic active perception frameworks based on Gaussian Processes, and merged into geometric maps so to facilitate the SAR mission. We then show how to use tactile perception to enhance mapping. Implicit environmental properties such as the terrain deformability, are analyzed through strategic glancesand touches and then mapped into probabilistic models.Lastly, we address the problem of reconstructing objects in the environment. Wepresent a technique for simultaneous 3D reconstruction of static regions and rigidly moving objects in a scene that enables on-the-fly model generation. Although this thesis focuses mostly on rescue UGVs, the concepts presented canbe applied to other mobile platforms that operates under similar circumstances. To make sure that the suggested methods work, we have put efforts into design of user interfaces and the evaluation of those in user studies.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2018. s. 58
Serie
TRITA-EECS-AVL ; 2018:26
Nyckelord
Gaussian Processes Robotics UGV Active perception geometric maps
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Datalogi
Identifikatorer
urn:nbn:se:kth:diva-225957 (URN)978-91-7729-720-8 (ISBN)
Disputation
2018-04-18, F3, Lindstedtsvägen 26, Sing-Sing, floor 2, KTH Campus, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet
Anmärkning

QC 20180411

Tillgänglig från: 2018-04-11 Skapad: 2018-04-11 Senast uppdaterad: 2018-04-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttps://ras.papercept.net/conferences/conferences/SSRR16/program/

Sök vidare i DiVA

Av författaren/redaktören
Båberg, FredrikCaccamo, SergioÖgren, Petter
Av organisationen
Datorseende och robotik, CVAP
Robotteknik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 7200 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf