Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of residual stresses in resistance spot weld
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. Iran University of Science and Technology, Iran.
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.ORCID-id: 0000-0003-4180-4710
2016 (engelsk)Inngår i: Aircraft Engineering and Aerospace Technology, ISSN 1748-8842, Vol. 88, nr 4, s. 492-497Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Purpose - The purpose of this paper is to predict residual stresses in resistance spot weld of 2 mm thick aluminum 6061-T6 sheets. The joint use of finite element analysis and artificial neural networks can eliminate the high costs of residual stresses measuring tests and significantly shorten the time it takes to arrive at a solution. Design/methodology/approach - Finite element method and artificial neural network have been used to predict the residual stresses. Different spot welding parameters such as the welding current, the welding time and the electrode force have been used for the simulation purposes in a thermal-electrical-structural coupled finite element model. To validate the numerical results, a series of experiments have been performed, and residual stresses have been measured. The results obtained from the finite element analysis have been used to build up a back-propagation artificial neural network model for residual stresses prediction. Findings - The results revealed that the neural network model created in this study can accurately predict residual stresses produced in resistance spot weld. Using a combination of these two developed models, the residual stresses can be predicted in terms of spot weld parameters with high speed and accuracy. Practical implications - The paper includes implication for aircraft and automobile industries to predict residual stresses. Residual stresses can lower the strength and fatigue life of the spot-welded joints and determine the performance quality of the structure. Originality/value - This paper presents an approach to reduce the high costs and long times of residual stresses measuring tests.

sted, utgiver, år, opplag, sider
Emerald Group Publishing Limited, 2016. Vol. 88, nr 4, s. 492-497
Emneord [en]
Neural network, Finite element model, Residual stresses, Resistance spot weld
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-192416DOI: 10.1108/AEAT-11-2012-0206ISI: 000381206700003Scopus ID: 2-s2.0-84984924883OAI: oai:DiVA.org:kth-192416DiVA, id: diva2:968731
Merknad

QC 20160912

Tilgjengelig fra: 2016-09-12 Laget: 2016-09-12 Sist oppdatert: 2016-09-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Afshari, DavoodBarsoum, Zuheir
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 570 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf