Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
How Good Can a Face Identifier Be Without Learning
KTH, Skolan för datavetenskap och kommunikation (CSC), Medieteknik och interaktionsdesign, MID.ORCID-id: 0000-0002-8673-0797
KTH, Skolan för datavetenskap och kommunikation (CSC), Medieteknik och interaktionsdesign, MID.
KTH, Skolan för datavetenskap och kommunikation (CSC), Medieteknik och interaktionsdesign, MID.ORCID-id: 0000-0003-3779-5647
2016 (Engelska)Ingår i: Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349Artikel i tidskrift, Editorial material (Refereegranskat) In press
Abstract [en]

Constructing discriminative features is an essential issue in developing face recognition algorithms. There are two schools in how features are constructed: hand-crafted features and learned features from data. A clear trend in the face recognition community is to use learned features to replace hand-crafted ones for face recognition, due to the superb performance achieved by learned features through Deep Learning networks. Given the negative aspects of database-dependent solutions, we consider an alternative and demonstrate that, for good generalization performance, developing face recognition algorithms by using handcrafted features is surprisingly promising when the training dataset is small or medium sized. We show how to build such a face identifier with our Block Matching method which leverages the power of the Gabor phase in face images. Although no learning process is involved, empirical results show that the performance of this “designed” identifier is comparable (superior) to state-of-the-art identifiers and even close to Deep Learning approaches.

Ort, förlag, år, upplaga, sidor
Springer, 2016.
Nationell ämneskategori
Datorseende och robotik (autonoma system) Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:kth:diva-189190OAI: oai:DiVA.org:kth-189190DiVA, id: diva2:944067
Anmärkning

QC 20170208

Tillgänglig från: 2016-06-28 Skapad: 2016-06-28 Senast uppdaterad: 2018-01-10Bibliografiskt granskad
Ingår i avhandling
1. Human Face Identification and Face Attribute Prediction: From Gabor Filtering to Deep Learning
Öppna denna publikation i ny flik eller fönster >>Human Face Identification and Face Attribute Prediction: From Gabor Filtering to Deep Learning
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

After decades of research, it is exciting to see that face recognition technology has entered a most flourishing era. Driven by the latest development in data science and especially technical evolutions in computer vision and pattern recognition, face recognition has achieved significant progress over the last three years. In the near future, people can expect many useful and interesting face recognition applications to be deployed in many situations: they can be used for identifying suspects, organizing your photos with family and friends, and making computers better understand human beings. Many mysterious face recognition tricks depicted in movies may become reality in several years' time.

This thesis focuses on the development of face recognition algorithms that identify people from a single still image. Two questions are specifically studied. First, it introduces how we identify faces captured in controlled scenarios with cooperative users. In this scenario, a face recognition system captures a face and finds the most similar face from the ones stored in the face recognition system. Second, it describes our solutions for predicting face attributes from faces captured under arbitrary imaging conditions. These two problems were tackled by different schools of technologies: the solution to the first question employed a learning-free approach, whereas the latter question was solved by using the most recent Deep Learning technology. Thus, this thesis also reflects the technological evolution of face recognition over recent years.

To identify faces in controlled scenarios, we propose a novel Block Matching approach, which can effectively match faces without feature engineering or any machine learning components. By representing faces with very concise Gabor phase codes and matching them through our Block Matching approach, the identification accuracy is entirely comparable to and even better than the state-of-the-art. For predicting the attributes from faces captured in the wild, we propose leveraging the off-the-shelf mid-level representations from pre-trained convolutional neural networks. Comparative experiments show that our solution outperforms the previous state-of-the-art solution with a large margin in terms of both accuracy and efficiency. 

The approaches described in this thesis may look different from the ``mainstream''. But, together with the empirical findings, I hope they could provide some insights and update widely adopted concepts for solving related face recognition and computer vision problems.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. s. 27
Serie
TRITA-CSC-A, ISSN 1653-5723
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Medieteknik
Identifikatorer
urn:nbn:se:kth:diva-195092 (URN)978-91-7729-156-5 (ISBN)
Disputation
2016-11-11, K1, 13:00 (Engelska)
Opponent
Handledare
Anmärkning

QC 20161103

Tillgänglig från: 2016-11-03 Skapad: 2016-11-01 Senast uppdaterad: 2016-11-16Bibliografiskt granskad

Open Access i DiVA

fulltext(734 kB)65 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 734 kBChecksumma SHA-512
6f6598c144edcb73cb5bbf6a061709a6a075d8f8afccdb650e4f74ab49d81747a71806aa5d072a2542d7a107e968b61f938d354583874b1a8c4e657f2944d314
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Zhong, YangHedman, AndersLi, Haibo
Av organisationen
Medieteknik och interaktionsdesign, MID
I samma tidskrift
Lecture Notes in Computer Science
Datorseende och robotik (autonoma system)Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 65 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 253 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf