Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Is Multi-Path Transport Suitable for Latency Sensitive Traffic?
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science.
Simula Research Laboratory, Oslo, Norway.
Simula Research Laboratory, Oslo, Norway.
Simula Research Laboratory, Oslo, Norway.
Show others and affiliations
2016 (English)In: Computer Networks, ISSN 1389-1286, E-ISSN 1872-7069, Vol. 105, p. 1-21Article in journal (Refereed) Published
Abstract [en]

This paper assesses whether multi-path communication can help latency-sensitive applications to satisfy the requirements of their users. We consider Concurrent Multi-path Transfer for SCTP (CMT-SCTP) and Multi-path TCP (MPTCP) and evaluate their proficiency in transporting video, gaming, and web traffic over combinations of WLAN and 3G interfaces. To ensure the validity of our evaluation, several experimental approaches were used including simulation, emulation and live experiments. When paths are symmetric in terms of capacity, delay and loss rate, we find that the experienced latency is significantly reduced, compared to using a single path. Using multiple asymmetric paths does not affect latency - applications do not experience any increase or decrease, but might benefit from other advantages of multi-path communication. In the light of our conclusions, multi-path transport is suitable for latency-sensitive traffic and mature enough to be widely deployed. 

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 105, p. 1-21
Keywords [en]
Internet; Latency; Multi-path communication; Transport protocols; MPTCP; CMT-SCTP
National Category
Computer and Information Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kau:diva-42624DOI: 10.1016/j.comnet.2016.05.008ISI: 000380869300001OAI: oai:DiVA.org:kau-42624DiVA, id: diva2:933301
Available from: 2016-06-03 Created: 2016-06-03 Last updated: 2019-07-12Bibliographically approved
In thesis
1. Evaluating and Reducing Multipath Transport Latency
Open this publication in new window or tab >>Evaluating and Reducing Multipath Transport Latency
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Access to the Internet is a very significant part of everyday life with increasing online services such as news delivery, banking, gaming, audio and high quality movies. Applications require different transport guarantees with some requiring higher bandwidth and others low latency. Upgrading access link capacity does not guarantee faster access to the Internet as it offers higher bandwidth but may not offer low latency. With increasing number of mobile devices supporting more than one access technologies (e.g., WLAN, 3G, 4G,..), there is a need to analyse the impact of using multiple such technologies at the same time. Legacy transport protocols such as TCP or SCTP are only able to connect to one access network at a time to create an end-to-end connection. When more than one access technology is used, there may be a large difference in the data rate offered by each technology. This asymmetry might impact latency sensitive applications by creating out of order delivery. In this thesis, we focus on the latency aspect of multipath transport protocol performance. We consider CMT-SCTP and Multipath TCP as available multipath protocols that were designed for exploiting multiple paths for better throughput and reliability. We consider various real world traffic scenarios such as Video, Gaming and Web traffic to measure end-to-end latency. We perform simulations, emulations and experiments using heterogeneous network settings involving access networks with different bandwidth, delay and loss characteristics. MPTCP performs better in terms of latency than CMT-SCTP and TCP in certain scenarios where available paths are symmetric. However, MPTCP does not perform well in asymmetric scenarios with latency sensitive traffic. This analysis provides insights in to various areas of improvement in MPTCP such as scheduling and loss recovery to achieve low latency. We further focus on packet loss recovery in MPTCP for specific cases of tail losses to reduce latency. Tail losses are the losses that occur at the end of a packet stream. Recovering such losses is of higher significance to latency sensitive applications. We propose a modification to the use of TLP, a mechanism in TCP for tail loss recovery. We evaluate the performance of proposed TLP modification, first using emulations and with real world network experiments. Our results show significant improvements in latency for specific loss scenarios in emulations and up to 50% improvement in experiments.

Abstract [en]

With an increasing number of mobile devices supporting more than one access technologies (e.g., WLAN, 3G, 4G), there is a need to analyse the impact of using multiple such technologies at the same time. The inherent asymmetry among these technologies might affect latency sensitive applications by creating out of order delivery. In this thesis, we consider CMT-SCTP and Multipath TCP as available multipath protocols designed to exploit multiple paths for better throughput and reliability.  We perform simulations, emulations and experiments using various real-world traffic scenarios such as Video, Gaming and Web traffic to measure end-to-end latency. MPTCP performs better in terms of latency than CMT-SCTP and TCP in certain scenarios where available paths are symmetric. This analysis provides insights into various areas of improvement in MPTCP such as scheduling and loss recovery to achieve low latency. We further focus on packet loss recovery in MPTCP for specific cases of tail losses (losses that occur at the end of a packet stream) to reduce latency. This thesis presents a modification to the use of Tail Loss Probe (TLP) in MPTCP that provides improvements in latency for specific loss scenarios in emulations and upto 50% improvement in experiments.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2019. p. 103
Series
Karlstad University Studies, ISSN 1403-8099 ; 2019:5
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-71223 (URN)978-91-7867-001-7 (ISBN)978-91-7867-006-2 (ISBN)
Presentation
2019-03-21, 1B306, 10:30 (English)
Opponent
Supervisors
Available from: 2019-03-06 Created: 2019-02-20 Last updated: 2019-03-22Bibliographically approved

Open Access in DiVA

fulltext(1018 kB)257 downloads
File information
File name FULLTEXT01.pdfFile size 1018 kBChecksum SHA-512
d513d31c7a736ed40be7ba47c5474464cf5e622670d46a92785ebd96d2d752949d07348fd6247d0fad004179fae71d7fc4d11612c3e8d41199c4ce67b78c4f87
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Yedugundla, Venkata KiranHurtig, PerBrunstrom, Anna
By organisation
Department of Mathematics and Computer Science
In the same journal
Computer Networks
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 257 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 476 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf