Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CPT-SPT correlations using artificial neural network approach: A Case Study in Sweden
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik. College of Civil Engineering, Roudehen branch, Islamic Azad University, Tehran, Iran.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.ORCID-id: 0000-0001-9615-4861
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.ORCID-id: 0000-0002-8152-6092
2015 (Engelska)Ingår i: The Electronic journal of geotechnical engineering, ISSN 1089-3032, E-ISSN 1089-3032, Vol. 20, nr 28, s. 13439-13460Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

The correlation between Standard and Cone Penetration Tests (SPT and CPT) as two of the most used in-situ geotechnical tests is of practical interest in engineering designs. In this paper, new SPT-CPT correlations for southwest of Sweden are proposed and developed using an artificial neural networks (ANNs) approach. The influences of soil type, depth, cone tip resistance, sleeve friction, friction ratio and porewater pressure on obtained correlations has been taken into account in optimized ANN models to represent more comprehensive and accurate correlation functions. Moreover, the effect of particle mean grain size and fine content were investigated and discussed using graph analyses. The validation of ANN based correlations were tested using several statistical criteria and then compared to existing correlations in literature to quantify the uncertainty of the correlations. Using the sensitivity analyses, the most and least effective factors on CPT-SPT predictions were recognized and discussed. The results indicate the ability of ANN as an attractive alternative method regarding to conventional statistical analyses to develop CPT-SPT relations.

Ort, förlag, år, upplaga, sidor
E-Journal of Geotechnical Engineering , 2015. Vol. 20, nr 28, s. 13439-13460
Nyckelord [en]
Artificial neural networks, CPT-SPT correlations, Optimized network
Nationell ämneskategori
Geoteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-187426Scopus ID: 2-s2.0-84956611773OAI: oai:DiVA.org:kth-187426DiVA, id: diva2:930404
Anmärkning

QC 20160524

Tillgänglig från: 2016-05-24 Skapad: 2016-05-23 Senast uppdaterad: 2017-11-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Sök vidare i DiVA

Av författaren/redaktören
Abbaszadeh Shahri, AbbasLarsson, StefanJohansson, Fredrik
Av organisationen
Jord- och bergmekanik
I samma tidskrift
The Electronic journal of geotechnical engineering
Geoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1695 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf