Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Design and characterization of a rotating brushless PM exciter for a synchronous generator test setup
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. Univ Coll Southeast Norway, Fac Technol & Maritime Sci, N-3184 Borre, Norway. (Hydro Power)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Hydro Power)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Hydro Power)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Hydro Power)
Vise andre og tillknytning
2016 (engelsk)Inngår i: Design and characterization of a rotating brushless PM exciter for a synchronous generator test setup / [ed] IEEE Xplore, 2016, s. 259-265Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper deals with the characterization and construction of a rotating brushless PM exciter intended for synchronous generator excitation purposes. Traditionally, PM exciters are used as pre-exciters in synchronous generator excitations systems. In order to reduce the number of components and to increase the step time response of the system, a PM exciter is designed as an outer pole PM machine, with permanent magnets on the stator and armature windings on the rotor. The exciter was constructed electrically and mechanically to be fitted into an in-house synchronous generator test setup. A finite element model of the exciter was validated with no-load measurements of voltages and magnetic flux densities. The exciter was then characterized with unsaturated and saturated parameters.

sted, utgiver, år, opplag, sider
2016. s. 259-265
Emneord [en]
Brushless exciters, rotating exciters, permanent magnet machines, machine design, voltage measurement
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
URN: urn:nbn:se:uu:diva-292798DOI: 10.1109/ICELMACH.2016.7732536ISI: 000390884900037ISBN: 9781509025381 (tryckt)OAI: oai:DiVA.org:uu-292798DiVA, id: diva2:926665
Konferanse
International Conference on Electrical Machines 2016 (ICEM'16), Lausanne, SWITZERLAND, SEP 04-07, 2016
Tilgjengelig fra: 2016-05-09 Laget: 2016-05-09 Sist oppdatert: 2017-11-20bibliografisk kontrollert
Inngår i avhandling
1. Fast-response rotating brushless exciters for improved stability of synchronous generators
Åpne denne publikasjonen i ny fane eller vindu >>Fast-response rotating brushless exciters for improved stability of synchronous generators
2016 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The Norwegian Network Code FIKS from the Norwegian Transmission System Operator (TSO) Statnett, states that synchronous generators ≥ 25 MVA must have a static excitation system. It also includes requirements on the step time response and the available field winding ceiling voltage of the excitation system. An improved brushless excitation system is in operation in some pilot power plants. A rotating thyristor bridge is controlled via Bluetooth. The step time response is as fast as conventional static excitation systems. However, a ceiling voltage factor of 2 requires the thyristor bridge to operate at firing angles about 60 degrees. High torque pulsations, low power factor and low utilization of the exciter is the end result. New power electronic interfaces on the shaft results in a betterutilization of the designed exciter and improves the mechanical performance as well as the controllability of the generator field winding. Permanent magnet rotating exciters increase the field forcing strength of the synchronous generator, yielding improved transient stability (Fault Ride-Through req.). Brushless exciters also reduces regular maintenance of the generator. The thesis includes experiments on a state of the art synchronous generator test setup including constructed PM exciter and different power electronic solutions. Some investigations has been done on industrial power plants as well.

sted, utgiver, år, opplag, sider
Uppsala: Institutionen för teknikvetenskaper, 2016
Serie
UURIE / Uppsala universitet, Institutitionen för teknikvetenskaper, ISSN 0349-8352 ; 347-16L
Emneord
synchronous generators, permanent magnet machines, excitation systems, power electronic interfaces
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-292835 (URN)
Presentation
2016-06-13, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-07-07 Laget: 2016-05-09 Sist oppdatert: 2016-07-07bibliografisk kontrollert
2. A New Paradigm for Large Brushless Hydrogenerators: Advantages Beyond the Static System
Åpne denne publikasjonen i ny fane eller vindu >>A New Paradigm for Large Brushless Hydrogenerators: Advantages Beyond the Static System
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The grid code, FIKS, from the Norwegian transmission system operator (TSO), Statnett, states that synchronous generators > 25MVA, must have a static excitation system. However, an improved brushless excitation system is in operation on some commercial power plants (36MVA, 93.75rpm & 52MVA, 166.67rpm) with grid-assisting performance beyond the conventional static system. The convenional diode bridge is replaced with a remote-controlled thyristor bridge on the shaft. If wireless communication is not allowed, a control signal through brushes should be employed instead. The thesis explores the expected new era for large brushless hydrogenerators. The proposed brushless system have benefits of reduced regular maintenance due to elimination of brushes and reduced unscheduled maintenance due to redundancy; causing a redused cost-of-energy. A six-phase exciter design with a hybrid-mode thyristor bridge interface leads to improved fault-tolerance, better controllability, minimized torque pulsations and reduced armature currents of the exciter. Excitation boosting (EB) capability is included in the brushless system without additional components or circuitry, contrary to the static excitation system. The brushless excitation system is made insensitive to voltage dips in the interconnected grid, causing improved fault ride-through (FRT) capability and power system stabilizer (PSS) actions. 

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 93
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1491
Emneord
Brushless exciters, Rotating exciters, Permanent Magnet Machines, Synchronous Generator Excitation, Thyristor Rectifiers, Chopper Rectifiers
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-317780 (URN)978-91-554-9859-7 (ISBN)
Disputas
2017-05-10, Häggsalen, Ångströmlaboratoriet, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-04-19 Laget: 2017-03-17 Sist oppdatert: 2019-05-13
3. Analysis and control of magnetic forces in synchronous machines
Åpne denne publikasjonen i ny fane eller vindu >>Analysis and control of magnetic forces in synchronous machines
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In a synchronous machine, radial, tangential, and axial forces are generated. In this thesis, three different technologies to control them are proposed. The first one, involves the utilization of the radial forces that arise between the rotor and the stator. This is achieved by segmenting the rotor field winding into groups of poles and controlling their corresponding magnetization individually. This technology is particularly useful to achieve magnetic balance and to create controllable radial forces. The second technology, involves the control of the rotor field in order to influence the tangential forces that produce torque. This is achieved by inverting the rotor field winding polarity with respect to the stator field. With this technique, breaking and accelerating torques can be created. It is particularly useful to start a synchronous machine. Finally, the application of axial forces with a magnetic thrust bearing is discussed. The main benefits of this technology are higher efficiency and increased reliability.

The work presented in this thesis was carried out within the Division of Electricity in the Department of Engineering Sciences at Uppsala University. It is based on original research supported by analytical calculations, computational simulations and extensive experimental work.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 84
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1542
Emneord
eccentricity, electromagnetics, electromagnetic forces, excitation, magnetic fields, magnetic forces, magnetic thrust bearing, rotor drive, split rotor, starting, synchronous generators, synchronous machines, synchronous motors, unbalanced magnetic pull
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-328086 (URN)978-91-513-0036-8 (ISBN)
Disputas
2017-10-06, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-09-13 Laget: 2017-08-16 Sist oppdatert: 2017-10-17
4. Improving the functionality of synchronous machines using power electronics
Åpne denne publikasjonen i ny fane eller vindu >>Improving the functionality of synchronous machines using power electronics
2017 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

With the advent of modern power electronics there is reason to explore what can be achieved when it is applied to a mature technology like synchronous machines. In this text several concepts will be presented on how it is possible to control forces and how to get better performance out of synchronous machines by using power electronics. Methodologies to create radial forces by controlling the field current in a standard series connected rotor winding as well as when the winding is split in to several segments is presented. By segmenting the rotor a resulting force vector can be created to cancel forces due to unbalanced magnetic pull.

It is also shown that inverting the field current with respect to the stator field enables line start of synchronous machines without using damper bars, frequency converters, or starting motors.

Some first results from the installation and testing of an electromagnetic thrust bearing installed in unit U9 in the hydropower station in Porjus are presented. The benefits of the system is increased reliability and higher efficiency of the thrust bearing system.

An evaluation of a 2-stage brushless excitation system was done, different rotating power electronics topologies were tested in the stationary frame connected to a six-phase permanent magnet brushless exciter. The rotating control and measurement system for the power electronics is presented. Potential benefits of the system is that there is no need for brushes to transfer the field current to the rotor winding, fast response time due to actively controlled electronics, independence of the station bus voltage, and reduced maintenance.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017
Serie
UURIE / Uppsala universitet, Institutitionen för teknikvetenskaper, ISSN 0349-8352 ; 352-17L
Emneord
Power electronics, Synchronous machines, Excitation systems, Magnetic thrust bearing, Starting synchronous machines, Split rotor, Rotating electronics, Magnetic fields, Measurement systems, Unbalanced magnetic pull, Harmonics
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-333940 (URN)
Presentation
2017-12-18, Häggsalen (Å10132), Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-01-08 Laget: 2017-11-20 Sist oppdatert: 2018-01-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Nøland, Jonas KristiansenEvestedt, FredrikPérez-Loya, Jesus JoséAbrahamsson, JohanLundin, Urban
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 702 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf