Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A diagnostic tool for population models using non-compartmental analysis: The ncappc package for R
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap. Ege Univ, Fac Pharm, Dept Biopharmaceut & Pharmacokinet, TR-35100 Izmir, Turkey..
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 127, s. 83-93Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Background and objective: Non-compartmental analysis (NCA) calculates pharmacokinetic (PK) metrics related to the systemic exposure to a drug following administration, e.g. area under the concentration time curve and peak concentration. We developed a new package in R, called ncappc, to perform (i) a NCA and (ii) simulation-based posterior predictive checks (ppc) for a population PK (PopPK) model using NCA metrics. Methods: The nca feature of ncappc package estimates the NCA metrics by NCA. The ppc feature of ncappc estimates the NCA metrics from multiple sets of simulated concentration time data and compares them with those estimated from the observed data. The diagnostic analysis is performed at the population as well as the individual level. The distribution of the simulated population means of each NCA metric is compared with the corresponding observed population mean. The individual level comparison is performed based on the deviation of the mean of any NCA metric based on simulations for an individual from the corresponding NCA metric obtained from the observed data. The ncappc package also reports the normalized prediction distribution error (NPDE) of the simulated NCA metrics for each individual and their distribution within a population. Results: The ncappc produces two default outputs depending on the type of analysis performed, i.e., NCA and PopPK diagnosis. The PopPK diagnosis feature of ncappc produces 8 sets of graphical outputs to assess the ability of a population model to simulate the concentration time profile of a drug and thereby evaluate model adequacy. In addition, tabular outputs are generated showing the values of the NCA metrics estimated from the observed and the simulated data, along with the deviation, NPDE, regression parameters used to estimate the elimination rate constant and the related population statistics. Conclusions: The ncappc package is a versatile and flexible tool-set written in R that successfully estimates NCA metrics from concentration time data and produces a comprehensive set of graphical and tabular output to summarize the diagnostic results including the model specific outliers. The output is easy to interpret and to use in evaluation of a population PK model. ncappc is freely available on CRAN (http://crantoprojectorg/web/packages/ncappc/index.html/) and GitHub (https://github.comicacha0227/ncappc/). 

sted, utgiver, år, opplag, sider
2016. Vol. 127, s. 83-93
Emneord [en]
Non-compartmental analysis (NCA), PK, NONMEM, Posterior predictive check, Simulation-based diagnostic
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-286630DOI: 10.1016/j.cmpb.2016.01.013ISI: 000372521500008PubMedID: 27000291OAI: oai:DiVA.org:uu-286630DiVA, id: diva2:924237
Tilgjengelig fra: 2016-04-28 Laget: 2016-04-21 Sist oppdatert: 2017-11-30bibliografisk kontrollert

Open Access i DiVA

fulltext(2205 kB)409 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2205 kBChecksum SHA-512
804a9fb791127b87855fedff089040cc7209897c5c00fed4c34702f2264aac2654530c0e1dfb69c0e1a3a4d75adab4ef6bd9a61bfa4aed00c8dd2753a1f12775
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Hooker, Andrew C.Jönsson, SivKarlsson, Mats O.
Av organisasjonen
I samme tidsskrift
Computer Methods and Programs in Biomedicine

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 409 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 968 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf