Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. University of Mazandaran, Iran.
University of Mazandaran, Iran.
Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-1815-9699
Vise andre og tillknytning
2016 (engelsk)Inngår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 80, s. 566-573Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Fast and accurate detection of microorganisms is of key importance in clinical analysis and in food and water quality monitoring. Salmonella typhimurium is responsible for about a third of all cases of food borne diseases and consequently, its fast detection is of great importance for ensuring the safety of foodstuffs. We report the development of a label-free impedimetric aptamer-based biosensor for S. typhimurium detection. The aptamer biosensor was fabricated by grafting a diazonium-supporting layer onto screen printed carbon electrodes (SPEs), via electrochemical or chemical approaches, followed by chemical immobilisation of aminated-aptamer. FTIR-ATR, contact angle and electrochemical measurements were used to monitor the fabrication process. Results showed that electrochemical immobilisation of the diazonium-grafting layer allowed the formation of a denser aptamer layer, which resulted in higher sensitivity. The developed aptamer-biosensor responded linearly, on a logarithm scale, over the concentration range 1 x 10(1) to 1 x 10(8) CFU mL(-1), with a limit of quantification (LOQ) of 1 x 10(1) CFU mL(-1) and a limit of detection (LOD) of 6 CFU mL(-1). Selectivity studies showed that the aptamer biosensor could discriminate S. typhimurium from 6 other model bacteria strains. Finally, recovery studies demonstrated its suitability for the detection of S. typhimurium in spiked (1 x 10(2), 1 x 10(4) and 1 x 10(6) CFU mL(-1)) apple juice samples. (C) 2016 Elsevier B.V. All rights reserved.

sted, utgiver, år, opplag, sider
ELSEVIER ADVANCED TECHNOLOGY , 2016. Vol. 80, s. 566-573
Emneord [en]
Diazonium grafting; Aptamer; S. typhimurium; Label-free detection; Electrochemical impedance spectroscopy; Food analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-127249DOI: 10.1016/j.bios.2016.02.024ISI: 000372558500079PubMedID: 26894987OAI: oai:DiVA.org:liu-127249DiVA, id: diva2:921644
Merknad

Funding Agencies|Vetenskapsradet (Pathoscreen project; Swedish Research Link) [D0675001]; Ministry of Science Research and Technology of Iran

Tilgjengelig fra: 2016-04-20 Laget: 2016-04-19 Sist oppdatert: 2019-10-09bibliografisk kontrollert
Inngår i avhandling
1. Functionalised surfaces for bacterial discrimination
Åpne denne publikasjonen i ny fane eller vindu >>Functionalised surfaces for bacterial discrimination
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Bacterial detection and identification is a critical step in many arenas, including food and water safety, clinical diagnostics, bioprocess control and biosecurity. Social hygiene has a direct correlation with the strict control of microorganisms in these fields. The worldwide cases of bacterial infectious disease is assessed to be 1-2 billion annually, and these have a massive negative effect on the global economy. Although many precise techniques are currently available, a huge mortality and morbidity related to bacterial infection disease continues to be reported annually due to misdiagnosis or delay in diagnosis. Increasing efficiency and reliability of pathogen detection methods will potentially improve social health and protect society against pathogenic diseases.

The development of culture media for selective isolation and differentiation of bacteria started in the late 19th century. Immunological assays and then genotyping techniques were developed in 20th century, in addition to many less commonly used techniques for bacterial detection. Each of the currently used methods has its advantages and weaknesses in terms of speed, cost and accuracy. Much effort has recently been devoted to developing biosensors for bacterial detection for simpler and more rapid use.

This thesis is focused on functionalised surfaces for the development of biosensors for bacterial discrimination and detection, and is divided in three subsections. First, we explored a new approach for bacterial discrimination based on pattern recognition. Traditional culturing methods discriminate bacteria based on their metabolic activity pattern. Taking inspiration from the extensive body of work that reports the use of electronic-noses to differentiate bacteria based on the volatiles patterns they produce, we explored the possibility of bacteria differentiation based on adhesion patterns. By altering the electropolymerisation conditions, the physicalchemical surface properties of polypyrrole (PPy) can be tuned to fabricate a range of dissimilar surfaces. The adhesion of different bacteria on a series of polymers was measured. Data analysis of the adhesion patterns proved that bacteria can be discriminated by examining their adhesion to dissimilar surfaces. Next, we developed a new functionalisation of PPy by doping PPy with 4-N-Pentylphenylboronic Acid and investigated the modulation of bacteria binding to those surfaces. In this second section, a new electropolymerisation technique for whole-cell imprinting was developed based on different functional monomers. 3-Aminophenyl boronic acid was shown to be a good monomer to produce whole-cell imprinted polymers (CIP) with high affinity for bacterial cells with improved releasing ability. Finally, in the third section aptamers, which are promising synthetic recognition elements, were explored for bacterial detection testing. A specific aptamer was used to fabricate of a prototype of label-free aptasensor for bacterial detection. Also, the SELEX process was used to produce a pool of aptamers, or “polyclonal” aptamers, which targeted a group of bacteria species. Using polyclonal aptamers as a recognition element enables biosensors to enhance their resolution to detect broader types of bacterial species using a single serological-like test.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2016. s. 55
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1770
Emneord
Biosensorer, Bakterier, Mönsterigenkänning
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-160803 (URN)9789176857519 (ISBN)
Disputas
2016-06-17, Nobel, B-huset, Campus Valla, Linköping, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-10-09 Laget: 2019-10-09 Sist oppdatert: 2019-10-09bibliografisk kontrollert

Open Access i DiVA

fulltext(580 kB)184 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 580 kBChecksum SHA-512
6261710cb401e904e0774cabf192f7e0f573b761e8103ca74cd9da138441811e309229aef3caec4104f76e8088b85117afba4275d45ad286c700f320e70013eb
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Golabi, MohsenTurner, AnthonyBeni, Valerio
Av organisasjonen
I samme tidsskrift
Biosensors & bioelectronics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 184 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 496 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf