Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An approach towards generating surrogate models by using RBFN with a priori bias
Department of Mechanical Engineering, School of Engineering, Jönköping University, Jönköping, Sweden .ORCID-id: 0000-0001-7534-0382
Department of Engineering Science, University West, Trollhättan, Sweden.ORCID-id: 0000-0001-6821-5727
2014 (engelsk)Inngår i: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2014, Vol. 2B, New York, USA: ASME Press, 2014, artikkel-id V02BT03A024Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

In this paper, an approach to generate surrogate modelsconstructed by radial basis function networks (RBFN) with a prioribias is presented. RBFN as a weighted combination of radialbasis functions only, might become singular and no interpolationis found. The standard approach to avoid this is to add a polynomialbias, where the bias is defined by imposing orthogonalityconditions between the weights of the radial basis functionsand the polynomial basis functions. Here, in the proposed a prioriapproach, the regression coefficients of the polynomial biasare simply calculated by using the normal equation without anyneed of the extra orthogonality prerequisite. In addition to thesimplicity of this approach, the method has also proven to predictthe actual functions more accurately compared to the RBFNwith a posteriori bias. Several test functions, including Rosenbrock,Branin-Hoo, Goldstein-Price functions and two mathematicalfunctions (one large scale), are used to evaluate the performanceof the proposed method by conducting a comparisonstudy and error analysis between the RBFN with a priori and aposteriori known biases. Furthermore, the aforementioned approachesare applied to an engineering design problem, that ismodeling of the material properties of a three phase sphericalgraphite iron (SGI) . The corresponding surrogate models arepresented and compared

sted, utgiver, år, opplag, sider
New York, USA: ASME Press, 2014. artikkel-id V02BT03A024
Emneord [en]
Optimization, Response Surface, Surrogate Modelling, RBF, RBFN, Approximation Function
HSV kategori
Forskningsprogram
Maskinteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-48247ISI: 000379987300024Scopus ID: 2-s2.0-84961312861ISBN: 978-0-7918-4632-2 (tryckt)OAI: oai:DiVA.org:oru-48247DiVA, id: diva2:904515
Konferanse
ASME, International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, Buffalo, NY, USA, August 17-20, 2014
Tilgjengelig fra: 2016-02-18 Laget: 2016-02-15 Sist oppdatert: 2018-08-27bibliografisk kontrollert

Open Access i DiVA

fulltext(1883 kB)202 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1883 kBChecksum SHA-512
04288900065512a17a18cf23b72c322fc52c6ea294338a26ae1e458be0da17d43850f713a0082865bebf10c8553e2bd1635f35f5cb56e74c28cdd95340d693fd
Type fulltextMimetype application/pdf

Scopus

Søk i DiVA

Av forfatter/redaktør
Amouzgar, KavehStrömberg, Niclas

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 202 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 589 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf