Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Handling Small Calibration Sets in Mondrian Inductive Conformal Regressors
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Vise andre og tillknytning
2015 (engelsk)Inngår i: Statistical Learning and Data Sciences: Third International Symposium, SLDS 2015 Egham, UK, April 20–23, 2015 Proceedings / [ed] Alexander Gammerman, Vladimir Vovk, Harris Papadopoulos, Cham: Springer, 2015, 271-280 s.Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

In inductive conformal prediction, calibration sets must contain an adequate number of instances to support the chosen confidence level. This problem is particularly prevalent when using Mondrian inductive conformal prediction, where the input space is partitioned into independently valid prediction regions. In this study, Mondrian conformal regressors, in the form of regression trees, are used to investigate two problematic aspects of small calibration sets. If there are too few calibration instances to support the significance level, we suggest using either extrapolation or altering the model. In situations where the desired significance level is between two calibration instances, the standard procedure is to choose the more nonconforming one, thus guaranteeing validity, but producing conservative conformal predictors. The suggested solution is to use interpolation between calibration instances. All proposed techniques are empirically evaluated and compared to the standard approach on 30 benchmark data set . The results show that while extrapolation often results in invalid models, interpolation works extremely well and provides increased efficiency with preserved empirical validity.

sted, utgiver, år, opplag, sider
Cham: Springer, 2015. 271-280 s.
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 9047
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-124665ISBN: 978-3-319-17090-9 (tryckt)OAI: oai:DiVA.org:su-124665DiVA: diva2:890500
Konferanse
Third International Symposium, SLDS 2015, Egham, UK, April 20–23, 2015
Tilgjengelig fra: 2016-01-04 Laget: 2016-01-04 Sist oppdatert: 2016-11-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Søk i DiVA

Av forfatter/redaktør
Boström, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

Totalt: 29 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf