Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Design Aspects of an Experimental Setup for Investigating Current Ripple Effects in Lithium-ion Battery Cells
KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.ORCID-id: 0000-0002-9481-7366
KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.ORCID-id: 0000-0002-0108-1872
KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.ORCID-id: 0000-0002-6283-7661
KTH, Skolan för elektro- och systemteknik (EES), Elektrisk energiomvandling.ORCID-id: 0000-0002-0744-2552
Vise andre og tillknytning
2015 (engelsk)Inngår i: Power Electronics and Applications (EPE'15 ECCE-Europe), 2015 17th European Conference on, IEEE conference proceedings, 2015, s. 1-8Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper describes an experimental setup for investigating the effects of current ripple on lithium-ion battery cells. The experimental setup is designed so that twelve li-ion cells can be simultaneously tested in a controlled environment. The experimental setup allows for a wide range of current ripple in terms of frequency and amplitude. Additionally, the quantification of the current ripple effects such as the aging of li-ion cells implies that a precise measurement system has to be designed which also are discussed in the paper.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2015. s. 1-8
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-178001DOI: 10.1109/EPE.2015.7309112ISI: 000377101800063Scopus ID: 2-s2.0-84965074464OAI: oai:DiVA.org:kth-178001DiVA, id: diva2:875511
Konferanse
Power Electronics and Applications (EPE'15 ECCE-Europe), 8-10 Sept. 2015, Geneva,
Forskningsfinansiär
Swedish Energy AgencyStandUp
Merknad

QC 20160216

Tilgjengelig fra: 2015-12-01 Laget: 2015-12-01 Sist oppdatert: 2019-05-17bibliografisk kontrollert
Inngår i avhandling
1. Modeling and Analysis of the Interaction of Batteries and Power Electronic Converters
Åpne denne publikasjonen i ny fane eller vindu >>Modeling and Analysis of the Interaction of Batteries and Power Electronic Converters
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis deals with the interaction of batteries and power electronic converters in automotive applications. Even if the additional heating caused by (unwanted) alternating currents is disregarded, there has been a concern that alternating currents can be harmful for batteries. For that reason, alternating currents can be filtered using capacitors and/or by sophisticated hardware. In this work, the concern whether alternating currents are harmful to batteries is studied particular focus on large, lithium-ion cells for use in automotive applications.First, the harmonic content in the battery current of two, commercial hybrid-electric busses were measured and analysed. The most prominent harmonic had a peak magnitude higher than 10% of the maximum direct current level (160 A) arising at frequencies below 150 Hz. The maximum amplitude detected of a harmonic caused by the voltage source converter’s switching action was around 10 A and occurred at a frequency of 2 kHz. An experimental setup with alternating current capability for evaluating large lithium-ion cells has been designed and built. Twelve lithium-ion cells were cycled at a rate if 1 C during approximately 2000 cycles (corresponding to approximately one year). The cells were cycled with an superimposed alternating current of 1 Hz, 100 Hz, or 1 kHz while the rest of the cells were cycled with direct current (only), injected with alternating current (only), or no current at all (calendar aging). No negative effects caused by the alternating current was identified in terms of capacity fade and power fade for the tested lithium-ion cells. A comparison between sinusoidal current-ripple charging and conventional constant-current constant-voltage charging was also carried out. Three lithium-ion cells were cycled (ten times) with different ac currents superimposed during charge. The results were analyzed statistically and no significant improvements in terms of charging time or charging efficiency were observed in any of the charging tests using an superimposed ac current. The injection of alternating currents into batteries for heating purposes has also been studied and a control method for battery heating using an ac current was proposed. The proposed controller is applicable regardless of the LIB’s subsequent impedance nature (capacitive, inductive or resistive). Further, a design process for the generation of magnified alternating currents in dc-dc converters was presented. By matching the switching frequency with the frequency where the LCL filter and the battery resonate, the current flowing in the semiconductors and the switching frequency could be reduced. In a small experimental setup using a single lithium-ion cell, using an LCL-resonant circuit and a full bridges witch arrangement, magnifications of up to 15.7 were reached. This allowed for a loss reduction in the semiconductors of up to 75%, when compared to an equivalent dc-dc converter enabled to produce anon-magnified ac current. 

sted, utgiver, år, opplag, sider
Stockholm, Sweden: KTH Royal Institute of Technology, 2019. s. 184
Serie
TRITA-EECS-AVL ; 2019:45
Emneord
Alternating current, aging, electric vehicles, harmonics, lithium-ion batteries, power converter, resonant filters, ripple, temperature control.
HSV kategori
Forskningsprogram
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-251665 (URN)978-91-7873-187-9 (ISBN)
Disputas
2019-06-05, Kollegiesalen, Brinellvägen 8, Kungliga Tekniska högskolan, Stockholm, 14:00 (engelsk)
Opponent
Veileder
Merknad

QC 20190517

Tilgjengelig fra: 2019-05-17 Laget: 2019-05-17 Sist oppdatert: 2019-06-17bibliografisk kontrollert

Open Access i DiVA

fulltext(772 kB)275 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 772 kBChecksum SHA-512
2ad4995262547aab34a41cb76b1941358f5342038523ac8c4652f6941965b3cdb06d31a7cf29da068fd4452215ad7946df3771d900943242bab03e988739abc7
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopusIEEEXplore

Søk i DiVA

Av forfatter/redaktør
Soares, RudiBessman, AlexanderWallmark, OskarLeksell, MatsBehm, MårtenSvens, Pontus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 275 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 427 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf