Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Strategy towards independent electrical stimulation from cochlear implants: Guided auditory neuron growth on topographically modified nanocrystalline diamond
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Öron-, näs- och halssjukdomar.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Fysiologi. (Molekylär fysiologi och neurovetenskap)
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Reumatologi.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 31, s. 211-220Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cochlear implants (CI) have been used for several decades to treat patients with profound hearing loss. Nevertheless, results vary between individuals, and fine hearing is generally poor due to the lack of discrete neural stimulation from the individual receptor hair cells. A major problem is the deliverance of independent stimulation signals to individual auditory neurons. Fine hearing requires significantly more stimulation contacts with intimate neuron/electrode interphases from ordered axonal re-growth, something current CI technology cannot provide.

Here, we demonstrate the potential application of micro-textured nanocrystalline diamond (NCD) surfaces on CI electrode arrays. Such textured NCD surfaces consist of micrometer-sized nail-head-shaped pillars (size 5 5 lm2) made with sequences of micro/nano-fabrication processes, including sputtering, photolithography and plasma etching.

The results show that human and murine inner-ear ganglion neurites and, potentially, neural progenitor cells can attach to patterned NCD surfaces without an extracellular matrix coating. Microscopic methods revealed adhesion and neural growth, specifically along the nail-head-shaped NCD pillars in an ordered manner, rather than in non-textured areas. This pattern was established when the inter-NCD pillar distance varied between 4 and 9 lm.

The findings demonstrate that regenerating auditory neurons show a strong affinity to the NCD pillars, and the technique could be used for neural guidance and the creation of new neural networks. Together with the NCD’s unique anti-bacterial and electrical properties, patterned NCD surfaces could provide designed neural/electrode interfaces to create independent electrical stimulation signals in CI electrode arrays for the neural population.

Ort, förlag, år, upplaga, sidor
2016. Vol. 31, s. 211-220
Nationell ämneskategori
Medicinska material och protesteknik Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:uu:diva-266956DOI: 10.1016/j.actbio.2015.11.021ISI: 000370086100019PubMedID: 26593784OAI: oai:DiVA.org:uu-266956DiVA, id: diva2:871463
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 603029Tillgänglig från: 2015-11-14 Skapad: 2015-11-14 Senast uppdaterad: 2017-12-01Bibliografiskt granskad
Ingår i avhandling
1. Strategies in Cochlear Nerve Regeneration, Guidance and Protection: Prospects for Future Cochlear Implants
Öppna denna publikation i ny flik eller fönster >>Strategies in Cochlear Nerve Regeneration, Guidance and Protection: Prospects for Future Cochlear Implants
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Today, it is possible to restore hearing in congenitally deaf children and severely hearing-impaired adults through cochlear implants (CIs). A CI consists of an external sound processor that provides acoustically induced signals to an internal receiver. The receiver feeds information to an electrode array inserted into the fluid-filled cochlea, where it provides direct electrical stimulation to the auditory nerve. Despite its great success, there is still room for improvement, so as to provide the patient with better frequency resolution, pitch information for music and speech perception and overall improved quality of sound.

 A better stimulation mode for the auditory nerves by increasing the number of stimulation points is believed to be a part of the solution. Current technology depends on strong electrical pulses to overcome the anatomical gap between neurons and the CI. The spreading of currents limits the number of stimulation points due to signal overlap and crosstalk.

Closing the anatomical gap between spiral ganglion neurons and the CI could lower the stimulation thresholds, reduce current spread, and generate a more discrete stimulation of individual neurons. This strategy may depend on the regenerative capacity of auditory neurons, and the ability to attract and guide them to the electrode and bridge the gap.

Here, we investigated the potential of cultured human and murine neurons from primary inner ear tissue and human neural progenitor cells to traverse this gap through an extracellular matrix gel.

Furthermore, nanoparticles were used as reservoirs for neural attractants and applied to CI electrode surfaces. The nanoparticles retained growth factors, and inner ear neurons showed affinity for the reservoirs in vitro.

The potential to obtain a more ordered neural growth on a patterned, electrically conducting nanocrystalline diamond surface was also examined. Successful growth of auditory neurons that attached and grew on the patterned substrate was observed.

By combining the patterned diamond surfaces with nanoparticle-based reservoirs and nerve-stimulating gels, a novel, high resolution CI may be created. This strategy could potentially enable the use of hundreds of stimulation points compared to the 12 – 22 used today. This could greatly improve the hearing sensation for many CI recipients. 

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 56
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1193
Nyckelord
Human vestibular nerve, Scarpa's ganglion, Stem cells, Nanoparticles, Nanocrystalline diamond
Nationell ämneskategori
Medicin och hälsovetenskap Medicinska och farmaceutiska grundvetenskaper
Forskningsämne
Oto-rhino-laryngologi; Medicinsk vetenskap
Identifikatorer
urn:nbn:se:uu:diva-276336 (URN)978-91-554-9503-9 (ISBN)
Disputation
2016-04-28, Skoogsalen, Akademiska Sjukhuset, Ingång 78/79, Uppsala, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-04-07 Skapad: 2016-02-11 Senast uppdaterad: 2018-01-10
2. Bio-Nano Interactions: Synthesis, Functionalization and Characterization of Biomaterial Interfaces
Öppna denna publikation i ny flik eller fönster >>Bio-Nano Interactions: Synthesis, Functionalization and Characterization of Biomaterial Interfaces
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Current strategies for designing biomaterials involve creating materials and interfaces that interact with biomolecules, cells and tissues.  This thesis aims to investigate several bioactive surfaces, such as nanocrystalline diamond (NCD), hydroxyapatite (HA) and single crystalline titanium dioxide, in terms of material synthesis, surface functionalization and characterization.

Although cochlear implants (CIs) have been proven to be clinically successful, the efficiency of these implants still needs to be improved. A CI typically only has 12-20 electrodes while the ear has approximately 3400 inner hair cells. A type of micro-textured NCD surface that consists of micrometre-sized nail-head-shaped pillars was fabricated. Auditory neurons showed a strong affinity for the surface of the NCD pillars, and the technique could be used for neural guidance and to increase the number of stimulation points, leading to CIs with improved performance.

Typical transparent ceramics are fabricated using pressure-assisted sintering techniques. However, the development of a simple energy-efficient production method remains a challenge. A simple approach to fabricating translucent nano-ceramics was developed by controlling the morphology of the starting ceramic particles. Translucent nano-ceramics, including HA and strontium substituted HA, could be produced via a simple filtration process followed by pressure-less sintering. Furthermore, the application of such materials as a window material was investigated. The results show that MC3T3 cells could be observed through the translucent HA ceramic for up to 7 days. The living fluorescent staining confirmed that the MC3T3 cells were visible throughout the culture period.

Single crystalline rutile possesses in vitro bioactivity, and the crystalline direction affects HA formation. The HA growth on (001), (100) and (110) faces was investigated in a simulated body fluid in the presence of fibronectin (FN) via two different processes. The HA layers on each face were analysed using different characterization techniques, revealing that the interfacial energies could be altered by the pre-adsorbed FN, which influenced HA formation.

In summary, micro textured NCD, and translucent HA and FN functionalized single crystalline rutile, and their interactions with cells and biomimetic HA were studied. The results showed that controlled surface properties are important for enhancing a material’s biological performance.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 37
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1345
Nyckelord
Bioactive surfaces, nanocrystalline diamond, hydroxyapatite, protein secondary structure, protein absorption, auditory neurons, single crystalline rutile, nano morphology, surface functionalisation, in vitro biomineralisation, translucent nano-ceramics, bio-window material, material characterisation.
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Teknisk fysik med inriktning mot materialvetenskap
Identifikatorer
urn:nbn:se:uu:diva-277121 (URN)978-91-554-9478-0 (ISBN)
Disputation
2016-06-01, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-05-11 Skapad: 2016-02-17 Senast uppdaterad: 2016-06-01

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Sök vidare i DiVA

Av författaren/redaktören
Cai, YixiaoEdin, FredrikJin, ZheAlexsson, AndreiGudjonsson, OlafurLiu, WeiRask-Andersen, HelgeKarlsson, MikaelLi, Hao
Av organisationen
Tillämpad materialvetenskapÖron-, näs- och halssjukdomarFysiologiReumatologiNeurokirurgi
I samma tidskrift
Acta Biomaterialia
Medicinska material och protesteknikTeknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1967 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf