Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Query-sensitive Distance Measure Selection for Time Series Nearest Neighbor Classification
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2016 (engelsk)Inngår i: Intelligent Data Analysis, ISSN 1088-467X, E-ISSN 1571-4128, Vol. 20, nr 1, 5-27 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Many distance or similarity measures have been proposed for time series similarity search. However, none of these measures is guaranteed to be optimal when used for 1-Nearest Neighbor (NN) classification. In this paper we study the problem of selecting the most appropriate distance measure, given a pool of time series distance measures and a query, so as to perform NN classification of the query. We propose a framework for solving this problem, by identifying, given the query, the distance measure most likely to produce the correct classification result for that query. From this proposed framework, we derive three specific methods, that differ from each other in the way they estimate the probability that a distance measure correctly classifies a query object. In our experiments, our pool of measures consists of Dynamic TimeWarping (DTW), Move-Split-Merge (MSM), and Edit distance with Real Penalty (ERP). Based on experimental evaluation with 45 datasets, the best-performing of the three proposed methods provides the best results in terms of classification error rate, compared to the competitors, which include using the Cross Validation method for selecting the distance measure in each dataset, as well as using a single specific distance measure (DTW, MSM, or ERP) across all datasets.

sted, utgiver, år, opplag, sider
2016. Vol. 20, nr 1, 5-27 s.
Emneord [en]
Time series, classification, distance measures
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-122873DOI: 10.3233/IDA-150791ISI: 000369379100002OAI: oai:DiVA.org:su-122873DiVA: diva2:868696
Tilgjengelig fra: 2015-11-11 Laget: 2015-11-11 Sist oppdatert: 2016-03-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Papapetrou, Panagiotis
Av organisasjonen
I samme tidsskrift
Intelligent Data Analysis

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 36 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf