Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Size matters: choosing the most informative set of window lengths for mining patterns in event sequences
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2015 (engelsk)Inngår i: Data mining and knowledge discovery, ISSN 1384-5810, E-ISSN 1573-756X, Vol. 29, nr 6, 1838-1864 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In order to find patterns in data, it is often necessary to aggregate or summarise data at a higher level of granularity. Selecting the appropriate granularity is a challenging task and often no principled solutions exist. This problem is particularly relevant in analysis of data with sequential structure. We consider this problem for a specific type of data, namely event sequences. We introduce the problem of finding the best set of window lengths for analysis of event sequences for algorithms with real-valued output. We present suitable criteria for choosing one or multiple window lengths and show that these naturally translate into a computational optimisation problem. We show that the problem is NP-hard in general, but that it can be approximated efficiently and even analytically in certain cases. We give examples of tasks that demonstrate the applicability of the problem and present extensive experiments on both synthetic data and real data from several domains. We find that the method works well in practice, and that the optimal sets of window lengths themselves can provide new insight into the data.

sted, utgiver, år, opplag, sider
2015. Vol. 29, nr 6, 1838-1864 s.
Emneord [en]
Event sequence, Pattern mining, Window length, Output-space clustering, Exploratory data analysis
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-111102DOI: 10.1007/s10618-014-0397-3ISI: 000361826200012OAI: oai:DiVA.org:su-111102DiVA: diva2:774239
Tilgjengelig fra: 2014-12-22 Laget: 2014-12-22 Sist oppdatert: 2015-10-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Papapetrou, Panagiotis
Av organisasjonen
I samme tidsskrift
Data mining and knowledge discovery

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 27 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf