Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aluminophosphate monoliths with high CO2-over-N2 selectivity and CO2 capture capacity
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Luleå University of Technology, Sweden.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2014 (English)In: RSC Advances, E-ISSN 2046-2069, Vol. 4, no 99, p. 55877-55883Article in journal (Refereed) Published
Abstract [en]

Monoliths of microporous aluminophosphates (AlPO4-17 and AlPO4-53) were structured by binder-freepulsed current processing. Such monoliths could be important for carbon capture from flue gas. TheAlPO4-17 and AlPO4-53 monoliths exhibited a tensile strength of 1.0 MPa and a CO2 adsorption capacityof 2.5 mmol g1 and 1.6 mmol g1, respectively at 101 kPa and 0 C. Analyses of single component CO2and N2 adsorption data indicated that the AlPO4-53 monoliths had an extraordinarily high CO2-over-N2selectivity from a binary gas mixture of 15 mol% CO2 and 85 mol% N2. The estimated CO2 capturecapacity of AlPO4-17 and AlPO4-53 monoliths in a typical pressure swing adsorption (PSA) process at 20C was higher than that of the commonly used zeolite 13X granules. Under cyclic sorption conditions,AlPO4-17 and AlPO4-53 monoliths were regenerated by lowering the pressure of CO2. Regeneration wasdone without application of heat, which would regenerate them to their full capacity for CO2 adsorption.

Place, publisher, year, edition, pages
2014. Vol. 4, no 99, p. 55877-55883
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-109022DOI: 10.1039/c4ra05009fISI: 000344997800024OAI: oai:DiVA.org:su-109022DiVA, id: diva2:761972
Available from: 2014-11-10 Created: 2014-11-10 Last updated: 2022-09-15Bibliographically approved
In thesis
1. Structuring porous adsorbents and composites for gas separation and odor removal
Open this publication in new window or tab >>Structuring porous adsorbents and composites for gas separation and odor removal
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Porous zeolite, carbon and aluminophosphate powders have been colloidally assembled and post-processed in the form of monoliths, flexible free standing films and coatings for gas separation and odor removal. Zeolite 13X monoliths with macroporosites up to 50 vol% and a high CO2 uptake were prepared by colloidal processing and sacrificial templating. The durability of silicalite-I supports produced in a binder-free form by pulsed current processing (PCP) were compared with silicalite-I supports produced using clay-binders and conventional thermal treatment. Long-term acid and alkali treatment of the silicalite-I substrates resulted in removal of the clay binder and broadened the size-distribution of the interparticle macropores. Furthermore, strong discs of hydrothermally treated beer waste (HTC-BW) were produced by PCP and the discs were activated by physical activation in CO2 at high temperatures. The activated carbon discs showed high strength up to 7.2 MPa while containing large volume of porosities at all length scales. PCP was further used to structure aluminomphosphate powders (AlPO4-17 and AlPO4-53) into strong functional monoliths. The aluminophosphate monoliths had strengths of 1 MPa, high CO2 uptake and were easy to regenerate. Zeolite Y, silicalite and ZSM5 were selected as potential zeolite adsorbents for removal of sulfur containing compound, e.g. ethyl mercaptan (EM) and propyl mercaptan (PM). A novel processing procedure was used to fabricate free-standing films and coatings of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite; 89 w/w% and 96 w/w%, respectively. Thin flexible free-standing films and coatings of zeolite-CNF on paperboards with thickness around 100 µm and 40 µm, respectively, were produced. Headspace solid phase microextraction (SPME) coupled to gas chromatography- mass spectroscopy (GC/MS) analysis showed that the zeolite-CNF films can efficiently remove considerable amount of odors below concentration levels that can be sensed by the human olfactory system.

Place, publisher, year, edition, pages
Stockholm, Sweden: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2014. p. 62
Keywords
Structure, pulsed current processing, zeolite, aluminophosphate, activated carbon, CO2 separation, adsorption, durability, cellulose, film, coating
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-109179 (URN)978-91-7649-005-1 (ISBN)
Public defence
2014-12-16, Magnélisalen, Arrhenius Laboratory, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Manuscript.

Available from: 2014-11-24 Created: 2014-11-14 Last updated: 2022-02-23Bibliographically approved

Open Access in DiVA

Aluminophosphate monoliths with high CO2-over- N2 selectivity and CO2 capture capacity(1150 kB)603 downloads
File information
File name FULLTEXT01.pdfFile size 1150 kBChecksum SHA-512
bf4e5e73bdb8abf7fd4b91cdd37f719ea0d1b8e03e6ca9e1fc46fa5bcc3b19a3f23d07d8c95678d42742a0e834b454a12ac8b4a57f7ce8bae50400a02846f19c
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Akhtar, FaridKeshavarzi, NedaCheung, OceanHedin, NiklasBergström, Lennart
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
RSC Advances
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 603 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1092 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf