Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Inferring Offline Hierarchical Ties from Online Social Networks
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2014 (engelsk)Inngår i: Proceedings of the companion publication of the 23rd international conference on World wide web companion, Association for Computing Machinery (ACM), 2014, 1261-1266 s.Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Social networks can represent many different types of relationships between actors, some explicit and some implicit. For example, email communications between users may be represented explicitly in a network, while managerial relationships may not. In this paper we focus on analyzing explicit interactions among actors in order to detect hierarchical social relationships that may be implicit. We start by employing three well-known ranking-based methods, PageRank, Degree Centrality, and Rooted-PageRank (RPR) to infer such implicit relationships from interactions between actors. Then we propose two novel approaches which take into account the time-dimension of interactions in the process of detecting hierarchical ties. We experiment on two datasets, the Enron email dataset to infer manager-subordinate relationships from email exchanges, and a scientific publication co-authorship dataset to detect PhD advisor-advisee relationships from paper co-authorships. Our experiments show that time-based methods perform considerably better than ranking-based methods. In the Enron dataset, they detect 48% of manager-subordinate ties versus 32% found by Rooted-PageRank. Similarly, in co-author dataset, they detect 62% of advisor-advisee ties compared to only 39% by Rooted-PageRank.

sted, utgiver, år, opplag, sider
Association for Computing Machinery (ACM), 2014. 1261-1266 s.
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-108636DOI: 10.1145/2567948.2580070ISBN: 978-1-4503-2745-9 (tryckt)OAI: oai:DiVA.org:su-108636DiVA: diva2:759829
Konferanse
International World Wide Web Conference, Seoul, Republic of Korea, April 7 -11, 2014
Tilgjengelig fra: 2014-10-31 Laget: 2014-10-31 Sist oppdatert: 2014-12-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fullteksthttp://dl.acm.org/citation.cfm?id=2580070&CFID=607268695&CFTOKEN=10611098

Søk i DiVA

Av forfatter/redaktør
Papapetrou, Panagiotis
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 24 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf