Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Regression conformal prediction with random forests
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2014 (engelsk)Inngår i: Machine Learning, ISSN 0885-6125, E-ISSN 1573-0565, Vol. 97, nr 1-2, 155-176 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Regression conformal prediction produces prediction intervals that are valid, i.e., the probability of excluding the correct target value is bounded by a predefined confidence level. The most important criterion when comparing conformal regressors is efficiency; the prediction intervals should be as tight (informative) as possible. In this study, the use of random forests as the underlying model for regression conformal prediction is investigated and compared to existing state-of-the-art techniques, which are based on neural networks and k-nearest neighbors. In addition to their robust predictive performance, random forests allow for determining the size of the prediction intervals by using out-of-bag estimates instead of requiring a separate calibration set. An extensive empirical investigation, using 33 publicly available data sets, was undertaken to compare the use of random forests to existing state-of-the-art conformal predictors. The results show that the suggested approach, on almost all confidence levels and using both standard and normalized nonconformity functions, produced significantly more efficient conformal predictors than the existing alternatives.

sted, utgiver, år, opplag, sider
2014. Vol. 97, nr 1-2, 155-176 s.
Emneord [en]
Conformal prediction, Random forests, Regression
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-107969DOI: 10.1007/s10994-014-5453-0ISI: 000341431300008OAI: oai:DiVA.org:su-107969DiVA: diva2:754242
Merknad

AuthorCount:4;

Tilgjengelig fra: 2014-10-09 Laget: 2014-10-06 Sist oppdatert: 2014-10-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Boström, Henrik
Av organisasjonen
I samme tidsskrift
Machine Learning

Søk utenfor DiVA

GoogleGoogle Scholar

Altmetric

Totalt: 50 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf