Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
What a successful grasp tells about the success chances of grasps in its vicinity
KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
2011 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Infants gradually improve their grasping competences, both in terms of motor abilities as well as in terms of the internal shape grasp representations. Grasp densities [3] provide a statistical model of such an internal learning process. In the concept of grasp densities, kernel density estimation is used based on a six-dimensional kernel representing grasps with given position and orientation. For this so far an isotropic kernel has been used which exact shape have only been weakly justified. Instead in this paper, we use an anisotropic kernel that is statistically based on measured conditional probabilities representing grasp success in the neighborhood of a successful grasp. The anisotropy has been determined utilizing a simulation environment that allowed for evaluation of large scale experiments. The anisotropic kernel has been fitted to the conditional probabilities obtained from the experiments. We then show that convergence is an important problem associated with the grasp density approach and we propose a measure for the convergence of the densities. In this context, we show that the use of the statistically grounded anisotropic kernels leads to a significantly faster convergence of grasp densities.

Ort, förlag, år, upplaga, sidor
2011.
Serie
2011 IEEE International Conference on Development and Learning, ICDL 2011
Nyckelord [en]
Anisotropic kernel, Conditional probabilities, Faster convergence, Internal learning, Kernel Density Estimation, Large scale experiments, Motor abilities, Simulation environment, Statistical models, Success chances, Experiments, Anisotropy
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-150689DOI: 10.1109/DEVLRN.2011.6037342ISI: 000297472300030Scopus ID: 2-s2.0-80054986209ISBN: 9781612849904 (tryckt)OAI: oai:DiVA.org:kth-150689DiVA, id: diva2:744397
Konferens
2011 IEEE International Conference on Development and Learning, ICDL 2011, 24 August-27 August 2011, Frankfurt am Main, Germany
Anmärkning

QC 20140908

Tillgänglig från: 2014-09-08 Skapad: 2014-09-08 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Detry, Renaud
Av organisationen
Datorseende och robotik, CVAP
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 34 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf