Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Design and Analysis of High Speed Capacitive Pipeline DACs
Linköpings universitet, Institutionen för systemteknik, Elektroniska komponenter. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Elektroniska komponenter. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Elektroniska komponenter. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0001-8922-2360
2014 (Engelska)Ingår i: Analog Integrated Circuits and Signal Processing, ISSN 0925-1030, E-ISSN 1573-1979, Vol. 80, nr 3, s. 359-374Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Design of a high speed capacitive digital-to-analog converter (SC DAC) is presented for 65 nm CMOS technology. SC pipeline architecture is used followed by an output driver. For GHz frequency operation with output voltage swing suitable for wireless applications (300 mVpp) the DAC performance is shown to be limited by the capacitor array imperfections. While it is possible to design a highly linear output driver with HD3 < -70 dB and HD2 < -90 dB over 0.55 GHz band as we show, the maximum SFDR of the SC DAC is 45 dB with 8-bit resolution and Nyquist sampling of 3 GHz. The analysis shows the DAC performance is determined by the clock feed-through and settling effects in the SC array and not by the capacitor mismatch or kT/C noise, which appear negligible in this application. The capacitor array is designed based on the DAC design area defined in terms of the switch size and unit capacitance value. A tradeoff between the DAC bandwidth and resolution accompanied by SFDR is demonstrated. The high linearity of the output driver is attained by a combination of two techniques, the derivative superposition (DS) and resistive source degeneration. In simulations the complete Nyquist-rate DAC achieves SFDR of 45 dB with 8-bit resolution for signal bandwidth 1.36 GHz. With 6-bit and 5.5 GHz bandwidth 33 dB SFDR is attained. The total power consumption of the SC DAC is 90 mW with 1.2 V supply and clock frequency of 3 GHz.

Ort, förlag, år, upplaga, sidor
2014. Vol. 80, nr 3, s. 359-374
Nyckelord [en]
capacitive DAC, high speed DAC, highly linear output driver
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:liu:diva-105516DOI: 10.1007/s10470-014-0350-9ISI: 000342079400005OAI: oai:DiVA.org:liu-105516DiVA, id: diva2:707852
Tillgänglig från: 2014-03-25 Skapad: 2014-03-25 Senast uppdaterad: 2019-09-05
Ingår i avhandling
1. Efficient Integrated Circuits for Wideband Wireless Transceivers
Öppna denna publikation i ny flik eller fönster >>Efficient Integrated Circuits for Wideband Wireless Transceivers
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The proliferation of portable communication devices combined with the relentless demand for higher data rates has spurred the development of wireless communication standards which can support wide signal bandwidths. Benefits of the complementary metal oxide semiconductor (CMOS) process such as high device speeds and low manufacturing cost have rendered it the technology of choice for implementing wideband wireless transceiver integrated circuits (ICs). This dissertation addresses the key challenges encountered in the design of wideband wireless transceiver ICs. It is divided into two parts. Part I describes the design of crucial circuit blocks such as a highly selective wideband radio frequency (RF) front-end and an on-chip test module which are typically found in wireless receivers. The design of high-speed, capacitive DACs for wireless transmitters is included in Part II.

The first work in Part I is the design and implementation of a wideband RF frontend in 65-nm CMOS. To achieve blocker rejection comparable to surface-acousticwave (SAW) filters, the highly selective and tunable RF receiver utilizes impedance transformation filtering along with a two-stage architecture. It is well known that the low-noise amplifier (LNA) which forms the first front-end stage largely decides the receiver performance in terms of noise figure (NF) and linearity (IIP3/P1dB). The proposed LNA uses double cross-coupling technique to reduce NF while complementary derivative superposition (DS) and resistive feedback are employed to achieve high linearity. The resistive feedback also enhances input matching. In measurements, the front-end achieves performance comparable to SAW filters with blocker rejection greater than 38 dB, NF 3.2–5.2 dB, out-of-band IIP3 > +17 dBm and blocker P1dB > +5 dBm over a frequency range of 0.5–3 GHz.

The second work in Part I is the design of an RF amplitude detector for on-chip test. As the complexity of RF ICs continues to grow, the task of testing and debugging them becomes increasingly challenging. The degradation in performance or the drift from the optimal operation points may cause systems to fail. To prevent this effect and ensure acceptable performance in the presence of process, voltage and temperature variations (PVT), test and calibration of the RF ICs become indispensable. A wideband, high dynamic range RF amplitude detector design aimed at on-chip test is proposed. Gain-boosting and sub-ranging techniques are applied to the detection circuit to increase the gain over the full range of input amplitudes without compromising the input impedance. A technique suitable for on-chip third/second-order intercept  point (IP3/IP2) test by embedded RF detectors is also introduced.

Part II comprises the design and analysis of high-speed switched-capacitor (SC) DACs for 60-GHz radio transmitters. The digital-to-analog converter (DAC) is one of the fundamental building blocks of transmitters. SC DACs offer several advantages over the current-steering DAC architecture. Specifically, lower capacitor mismatch helps the SC DAC to achieve higher linearity. The switches in the SC DAC are realized by MOS transistors in the triode region which substantially relaxes the voltage headroom requirement. Consequently, SC DACs can be implemented using lower supply voltages in advanced CMOS process nodes compared to their currentsteering counterparts. The first work in Part II analyzes the factors limiting the performance of capacitive pipeline DACs. It is shown that the DAC performance is  limited mainly by the clock feed-through and settling effects in the SC  arrays while the impact of capacitor mismatch and kT/C noise are found to be negligible. Based on this analysis, the second work in Part II proposes the split-segmented SC array DAC to overcome the clock feed-through problem since this topology eliminates pipelined charge propagation. Implemented in 65-nm CMOS, the 12-bit SC DAC achieves a Spurious Free Dynamic Range (SFDR) greater than 44 dB within the input signal bandwidth (BW) of 1 GHz with on-chip memory embedded for digital data generation. Power dissipation is 50 mW from 1.2 V supply. Similar performance is achieved with a lower supply voltage (0.9 V) which shows the scalability of the SC DAC for more advanced CMOS technologies. Furthermore, the proposed SC DAC satisfies the spectral mask of the IEEE 802.11ad WiGig standard with a second-order reconstruction filter and hence it can be used for the 60-GHz radio baseband.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2016. s. 146
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1722
Nationell ämneskategori
Elektroteknik och elektronik Signalbehandling Kommunikationssystem
Identifikatorer
urn:nbn:se:liu:diva-124006 (URN)10.3384/diss.diva-124006 (DOI)978-91-7685-904-9 (ISBN)
Disputation
2016-02-26, Transformen, Hus B, Campus Valla, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-01-18 Skapad: 2016-01-18 Senast uppdaterad: 2019-10-29Bibliografiskt granskad

Open Access i DiVA

fulltext(771 kB)1017 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 771 kBChecksumma SHA-512
cf05fff4a34f728e25c135ed183f654661c2f7fff30b6e81ddd55aaf85ef522258475cd60d4f3b7a98c4d9bb40520ce9647164730402b8b2d98cc48102335557
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Duong, Quoc-TaiDabrowski, JerzyAlvandpour, Atila
Av organisationen
Elektroniska komponenterTekniska högskolan
I samma tidskrift
Analog Integrated Circuits and Signal Processing
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1017 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 479 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf