Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Graph propositionalization for random forests
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2009 (engelsk)Inngår i: The Eighth International Conference on Machine Learning and Applications: Proceedings, IEEE Computer Society, 2009, 196-201 s.Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Graph propositionalization methods transform structured and relational data into a fixed-length feature vector format that can be used by standard machine learning methods. However, the choice of propositionalization method may have a significant impact on the performance of the resulting classifier. Six different propositionalization methods are evaluated when used in conjunction with random forests. The empirical evaluation shows that the choice of propositionalization method has a significant impact on the resulting accuracy for structured data sets. The results furthermore show that the maximum frequent itemset approach and a combination of this approach and maximal common substructures turn out to be the most successful propositionalization methods for structured data, each significantly outperforming the four other considered methods.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2009. 196-201 s.
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-101075DOI: 10.1109/ICMLA.2009.113OAI: oai:DiVA.org:su-101075DiVA: diva2:698683
Konferanse
The Eighth International Conference on Machine Learning and Applications (ICMLA), Miami Beach, Florida, 13 - 15 December 2009
Tilgjengelig fra: 2014-02-24 Laget: 2014-02-24 Sist oppdatert: 2014-02-26bibliografisk kontrollert
Inngår i avhandling
1. Learning predictive models from graph data using pattern mining
Åpne denne publikasjonen i ny fane eller vindu >>Learning predictive models from graph data using pattern mining
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Learning from graphs has become a popular research area due to the ubiquity of graph data representing web pages, molecules, social networks, protein interaction networks etc. However, standard graph learning approaches are often challenged by the computational cost involved in the learning process, due to the richness of the representation. Attempts made to improve their efficiency are often associated with the risk of degrading the performance of the predictive models, creating tradeoffs between the efficiency and effectiveness of the learning. Such a situation is analogous to an optimization problem with two objectives, efficiency and effectiveness, where improving one objective without the other objective being worse off is a better solution, called a Pareto improvement. In this thesis, it is investigated how to improve the efficiency and effectiveness of learning from graph data using pattern mining methods. Two objectives are set where one concerns how to improve the efficiency of pattern mining without reducing the predictive performance of the learning models, and the other objective concerns how to improve predictive performance without increasing the complexity of pattern mining. The employed research method mainly follows a design science approach, including the development and evaluation of artifacts. The contributions of this thesis include a data representation language that can be characterized as a form in between sequences and itemsets, where the graph information is embedded within items. Several studies, each of which look for Pareto improvements in efficiency and effectiveness are conducted using sets of small graphs. Summarizing the findings, some of the proposed methods, namely maximal frequent itemset mining and constraint based itemset mining, result in a dramatically increased efficiency of learning, without decreasing the predictive performance of the resulting models. It is also shown that additional background knowledge can be used to enhance the performance of the predictive models, without increasing the complexity of the graphs.

sted, utgiver, år, opplag, sider
Stockholm: Department of Computer and Systems Sciences, Stockholm University, 2014. 118 s.
Serie
Report Series / Department of Computer & Systems Sciences, ISSN 1101-8526 ; 14-003
Emneord
Machine Learning, Graph Data, Pattern Mining, Classification, Regression, Predictive Models
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
urn:nbn:se:su:diva-100713 (URN)978-91-7447-837-2 (ISBN)
Disputas
2014-03-25, room B, Forum, Isafjordsgatan 39, Kista, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2014-03-03 Laget: 2014-02-11 Sist oppdatert: 2014-03-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Karunaratne, ThashmeeBoström, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

Altmetric

Totalt: 11 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf