Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Control and Implementation of Three Level BoostConverter for Load Voltage Regulation
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära.
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, IEEE conference proceedings, 2013, s. 561-565Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

   The multilevel converters offer significant advantages for high power applications. The use of multilevel DC/DC converters provides improved efficiency for power conversion and transmission at high voltage. This paper investigates the control and implementation of a three level boost converter for regulating the load voltages. A PI controller based switch signal phase delay control (SSPDC) method is used for adjusting the load voltages at equal turn on and turn off time of the converter switches. The circuit simulation is done in Matlab/Simulink. The controller is realized by using the FPGA in Labview/Compact-Rio module. Software waiting loop length control technique is used for implementing the switch signal delay control. The hardware circuit is implemented and tested. The results show a validation of the controller for regulating the voltages. This method can easily be applied for voltage balancing in a three level neutral point clamped inverter where neutral voltage imbalance is always an issue.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2013. s. 561-565
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:uu:diva-218177DOI: 10.1109/IECON.2013.6699196OAI: oai:DiVA.org:uu-218177DiVA, id: diva2:695001
Konferens
39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013
Forskningsfinansiär
SweGRIDS - Swedish Centre for Smart Grids and Energy StorageTillgänglig från: 2014-02-09 Skapad: 2014-02-09 Senast uppdaterad: 2017-11-01
Ingår i avhandling
1. Grid Connected Three-Level Converters: Studies for Wave Energy Conversion
Öppna denna publikation i ny flik eller fönster >>Grid Connected Three-Level Converters: Studies for Wave Energy Conversion
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis presents an electrical system analysis of a wave energy converter (WEC) for the objective of grid connection. To transfer the enormous amount of power from waves to the load centers, efficient power electronic systems are essential. This thesis includes the modeling of a buoy–translator dynamics and the modeling of a linear permanent magnet generator along with simulation and experimental validation. Diode bridge rectifiers are considered for rectification to avoid the complex linear generator control at the input side. To reduce the size and the cost of energy storage elements, DC voltage regulation is done using a DC/DC converter.

To achieve smooth and high power, many WECs need to be connected to a common DC link. A neutral point clamped inverter is considered for the DC/AC conversion due to its advantages over conventional topologies. Various pulse width modulation schemes are tested for the inverter to choose the optimum PWM method. The harmonics in the inverter output voltage is derived numerically and compared with simulation and experiment to understand the effect of dead-time in the inverter operation.

Depending on the load current drawn from the inverter, the voltages in the two input capacitors of a three-level neutral point clamped inverter deviates from equilibrium unless the neutral point is grounded. To avoid this voltage imbalance as well as to regulate the DC link voltage a dual output boost converter with pulse delay control is proposed. The modeling, simulation and experiments show an improvement in the compensation voltage using pulse delay control compared to the previously proposed methods in the literature. The synchronous current control and the grid connection of the three-level converter have been accomplished in the laboratory. 

Finally, the three-level power converter system has been tested with a linear permanent magnet generator at Lysekil to analyze the controller requirements.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2014. s. 78
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1123
Nyckelord
Wave energy, power converters, control strategies, grid connection
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Teknisk fysik med inriktning mot elektronik
Identifikatorer
urn:nbn:se:uu:diva-218219 (URN)978-91-554-8875-8 (ISBN)
Disputation
2014-03-26, Häggsalen, Lägerhyddsvägen 1, Angstrom laboratory, Uppsala, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2014-03-04 Skapad: 2014-02-10 Senast uppdaterad: 2014-12-02Bibliografiskt granskad
2. Multilevel Power Converters with Smart Control for Wave Energy Conversion
Öppna denna publikation i ny flik eller fönster >>Multilevel Power Converters with Smart Control for Wave Energy Conversion
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The main focus of this thesis is on the power electronic converter system challenges associated with the grid integration of variable-renewable-energy (VRE) sources like wave, marine current, tidal, wind, solar etc. Wave energy conversion with grid integration is used as the key reference, considering its high energy potential to support the future clean energy requirements and due the availability of a test facility at Uppsala University. The emphasis is on the DC-link power conditioning and grid coupling of direct driven wave energy converters (DDWECs). The DDWEC reflects the random nature of its input energy to its output voltage wave shape. Thereby, it demands for intelligent power conversion techniques to facilitate the grid connection.

One option is to improve and adapt an already existing, simple and reliable multilevel power converter technology, using smart control strategies. The proposed WECs to grid interconnection system consists of uncontrolled three-phase rectifiers, three-level boost converter(TLBC) or three-level buck-boost converter (TLBBC) and a three-level neutral point clamped (TLNPC) inverter. A new method for pulse delay control for the active balancing of DC-link capacitor voltages by using TLBC/TLBBC is presented. Duty-ratio and pulse delay control methods are combined for obtaining better voltage regulation at the DC-link and for achieving higher controllability range. The classic voltage balancing problem of the NPC inverter input, is solved efficiently using the above technique. A synchronous current compensator is used for the NPC inverter based grid coupling. Various results from both simulation and hardware testing show that the required power conditioning and power flow control can be obtained from the proposed multilevel multistage converter system.

The entire control strategies are implemented in Xilinx Virtex 5 FPGA, inside National Instruments’ CompactRIO system using LabVIEW. A contour based dead-time harmonic analysis method for TLNPC and the possibilities of having various interconnection strategies of WEC-rectifier units to complement the power converter efforts for stabilizing the DC-link, are also presented. An advanced future AC2AC direct power converter system based on Modular multilevel converter (MMC) structure developed at Siemens AG is presented briefly to demonstrate the future trends in this area.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 98
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1597
Nyckelord
Multilevel power converter, FPGA control, Wave Energy, Three-level boost converter, Three-level buck-boost converter, Variable-renewable-energy, Three-level neutral point clamped inverter, Linear generator, DC-link, AC2AC direct converter, Modular multilevel converter
Nationell ämneskategori
Elektroteknik och elektronik
Forskningsämne
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-332730 (URN)978-91-513-0146-4 (ISBN)
Disputation
2017-12-04, Room 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (Engelska)
Handledare
Forskningsfinansiär
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Tillgänglig från: 2017-11-13 Skapad: 2017-11-01 Senast uppdaterad: 2018-03-07

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6699196&isnumber=6699103

Sök vidare i DiVA

Av författaren/redaktören
Krishna, RemyaElamalayil Soman, DeepakLeijon, Mats
Av organisationen
Elektricitetslära
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 631 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf