Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synchronous Current Compensator for a Self Balanced Three-Level Neutral Point Clamped Inverter
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Wave power)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära. (Wave Power)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära.
2014 (engelsk)Inngår i: Advances in Power Electronics, ISSN 2090-181X, E-ISSN 2090-1828, artikkel-id 620607Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents a synchronous current control method for a three-level neutral point clamped inverter. Synchronous reference frame control based on two decoupled proportional-integral (PI) controllers is used to control the current in direct and quadrature axes. A phase disposition pulse width modulation (PDPWM) method in regular symmetrical sampling is used for generating the inverter switching signals. To eliminate the harmonic content with no phase errors, two first-order low pass filters (LPFs) are used for the dq currents. The simulation of closed-loop control is done in Matlab/Simulink. The Vertex-5 field programmable gate array (FPGA) in Labview/CompactRio is used for the implementation of the control algorithm. The control and switch pulse generation are done in independent parallel loops. The synchronization of both loops is achieved by controlling the length of waiting time for each loop. The simulation results are validated with experiments. The results show that the control action is reliable and efficient for the load current control.

sted, utgiver, år, opplag, sider
Hindawi Publishing Corporation, 2014. artikkel-id 620607
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-218168DOI: 10.1155/2014/620607OAI: oai:DiVA.org:uu-218168DiVA, id: diva2:694982
Forskningsfinansiär
SweGRIDS - Swedish Centre for Smart Grids and Energy StorageTilgjengelig fra: 2014-02-09 Laget: 2014-02-09 Sist oppdatert: 2017-12-06
Inngår i avhandling
1. Grid Connected Three-Level Converters: Studies for Wave Energy Conversion
Åpne denne publikasjonen i ny fane eller vindu >>Grid Connected Three-Level Converters: Studies for Wave Energy Conversion
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis presents an electrical system analysis of a wave energy converter (WEC) for the objective of grid connection. To transfer the enormous amount of power from waves to the load centers, efficient power electronic systems are essential. This thesis includes the modeling of a buoy–translator dynamics and the modeling of a linear permanent magnet generator along with simulation and experimental validation. Diode bridge rectifiers are considered for rectification to avoid the complex linear generator control at the input side. To reduce the size and the cost of energy storage elements, DC voltage regulation is done using a DC/DC converter.

To achieve smooth and high power, many WECs need to be connected to a common DC link. A neutral point clamped inverter is considered for the DC/AC conversion due to its advantages over conventional topologies. Various pulse width modulation schemes are tested for the inverter to choose the optimum PWM method. The harmonics in the inverter output voltage is derived numerically and compared with simulation and experiment to understand the effect of dead-time in the inverter operation.

Depending on the load current drawn from the inverter, the voltages in the two input capacitors of a three-level neutral point clamped inverter deviates from equilibrium unless the neutral point is grounded. To avoid this voltage imbalance as well as to regulate the DC link voltage a dual output boost converter with pulse delay control is proposed. The modeling, simulation and experiments show an improvement in the compensation voltage using pulse delay control compared to the previously proposed methods in the literature. The synchronous current control and the grid connection of the three-level converter have been accomplished in the laboratory. 

Finally, the three-level power converter system has been tested with a linear permanent magnet generator at Lysekil to analyze the controller requirements.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2014. s. 78
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1123
Emneord
Wave energy, power converters, control strategies, grid connection
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot elektronik
Identifikatorer
urn:nbn:se:uu:diva-218219 (URN)978-91-554-8875-8 (ISBN)
Disputas
2014-03-26, Häggsalen, Lägerhyddsvägen 1, Angstrom laboratory, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2014-03-04 Laget: 2014-02-10 Sist oppdatert: 2014-12-02bibliografisk kontrollert
2. Multilevel Power Converters with Smart Control for Wave Energy Conversion
Åpne denne publikasjonen i ny fane eller vindu >>Multilevel Power Converters with Smart Control for Wave Energy Conversion
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The main focus of this thesis is on the power electronic converter system challenges associated with the grid integration of variable-renewable-energy (VRE) sources like wave, marine current, tidal, wind, solar etc. Wave energy conversion with grid integration is used as the key reference, considering its high energy potential to support the future clean energy requirements and due the availability of a test facility at Uppsala University. The emphasis is on the DC-link power conditioning and grid coupling of direct driven wave energy converters (DDWECs). The DDWEC reflects the random nature of its input energy to its output voltage wave shape. Thereby, it demands for intelligent power conversion techniques to facilitate the grid connection.

One option is to improve and adapt an already existing, simple and reliable multilevel power converter technology, using smart control strategies. The proposed WECs to grid interconnection system consists of uncontrolled three-phase rectifiers, three-level boost converter(TLBC) or three-level buck-boost converter (TLBBC) and a three-level neutral point clamped (TLNPC) inverter. A new method for pulse delay control for the active balancing of DC-link capacitor voltages by using TLBC/TLBBC is presented. Duty-ratio and pulse delay control methods are combined for obtaining better voltage regulation at the DC-link and for achieving higher controllability range. The classic voltage balancing problem of the NPC inverter input, is solved efficiently using the above technique. A synchronous current compensator is used for the NPC inverter based grid coupling. Various results from both simulation and hardware testing show that the required power conditioning and power flow control can be obtained from the proposed multilevel multistage converter system.

The entire control strategies are implemented in Xilinx Virtex 5 FPGA, inside National Instruments’ CompactRIO system using LabVIEW. A contour based dead-time harmonic analysis method for TLNPC and the possibilities of having various interconnection strategies of WEC-rectifier units to complement the power converter efforts for stabilizing the DC-link, are also presented. An advanced future AC2AC direct power converter system based on Modular multilevel converter (MMC) structure developed at Siemens AG is presented briefly to demonstrate the future trends in this area.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 98
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1597
Emneord
Multilevel power converter, FPGA control, Wave Energy, Three-level boost converter, Three-level buck-boost converter, Variable-renewable-energy, Three-level neutral point clamped inverter, Linear generator, DC-link, AC2AC direct converter, Modular multilevel converter
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot elektricitetslära
Identifikatorer
urn:nbn:se:uu:diva-332730 (URN)978-91-513-0146-4 (ISBN)
Disputas
2017-12-04, Room 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (engelsk)
Veileder
Forskningsfinansiär
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Tilgjengelig fra: 2017-11-13 Laget: 2017-11-01 Sist oppdatert: 2018-03-07

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://dx.doi.org/10.1155/2014/620607

Søk i DiVA

Av forfatter/redaktør
Krishna, RemyaElamalayil Soman, DeepakLeijon, Mats
Av organisasjonen
I samme tidsskrift
Advances in Power Electronics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 522 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf