Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. (KTH - International Groundwater Arsenic Research Group)
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. (KTH - International Groundwater Arsenic Research Group)
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. (KTH - International Groundwater Arsenic Research Group)
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. (KTH - International Groundwater Arsenic Research Group)ORCID iD: 0000-0003-4350-9950
Show others and affiliations
2013 (English)In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 262, p. 924-940Article in journal (Refereed) Published
Abstract [en]

Environmental settings in the southern area of Lake Poopó in the Bolivian highlands, the Altiplano, have generated elevated amounts of arsenic (As) in the water. The area is characterised by a semiarid climate, slow hydrological flow and geologic formations of predominantly volcanic origin. The present study aimed at mapping the extent of the water contamination in the area and to investigate the geogenic sources and processes involved in the release of As to the groundwater.Ground- and surface-water samples were collected from 24 different sites, including drinking water wells and rivers, in the southern Poopó basin in two different field campaigns during the dry and rainy seasons. The results revealed variable levels of As in shallow drinking water wells and average concentration exceeding the WHO guidelines value. Arsenic concentrations range from below 5.2μg/L (the detection level) to 207μg/L and averages 72μg/L. Additionally, high boron (B) concentrations (average 1902μg/L), and high salinity are further serious concerns for deteriorating the groundwater quality and rendering it unsuitable for drinking. Groundwater is predominantly of the Na-Cl-HCO3 type or the Ca-Na-HCO3 type with neutral or slightly alkaline pH and oxidising character. While farmers are seriously concerned about the water scarcity, and on a few occasions about salinity, there are no concerns about As and B present at levels exceeding the WHO guidelines, and causing negative long term effects on human health.Sediment samples from two soil profiles and a river bed along with fourteen rock samples were also collected and analysed. Sequential extractions of the sediments together with the calculation of the mineral saturation indices indicate that iron oxides and hydroxides are the important secondary minerals phases which are important adsorbents for As. High pH values, and the competition of As with HCO3 and dissolved silica for the adsorption sites probably seems to be an important process for the mobilisation of As in the shallow groundwaters of the region. Continuous monitoring and expansion of monitoring systems are necessary prerequisites for better understanding of the pattern of As mobilisation in the Southern Poopó Basin.

Place, publisher, year, edition, pages
2013. Vol. 262, p. 924-940
Keywords [en]
Adsorption, Alluvial sediments, Arsenic, Bolivian Altiplano, Groundwater, Volcanic rocks
National Category
Environmental Sciences Oceanography, Hydrology and Water Resources
Identifiers
URN: urn:nbn:se:kth:diva-139934DOI: 10.1016/j.jhazmat.2013.06.078ISI: 000329595500112PubMedID: 24091126Scopus ID: 2-s2.0-84887612009OAI: oai:DiVA.org:kth-139934DiVA, id: diva2:688542
Funder
Sida - Swedish International Development Cooperation Agency
Note

QC 20140117

Available from: 2014-01-17 Created: 2014-01-15 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Hydrogeochemistry of Naturally Occurring Arsenic and Other Trace Elements in the Central Bolivian Altiplano: Sources, mobility and drinking water quality
Open this publication in new window or tab >>Hydrogeochemistry of Naturally Occurring Arsenic and Other Trace Elements in the Central Bolivian Altiplano: Sources, mobility and drinking water quality
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The Bolivian Altiplano (BA) is a high plateau located in the western part of the country at an altitude of 3,600 to 3,900 meters above sea level and is bordered by the Eastern and Western Cordillera. Within the BA there is a large endorheic hydrologic system linking the Titicaca Lake in the north the Desaguadero River, lakes Uru-Uru and Poopó in the central part; and the Lacajahuira River and Coipasa and Uyuni salt pans in the south. Several mineralized areas, especially in the Eastern Cordillera, have been intensively exploited for centuries for the extraction of silver, gold, and tin from polymetallic sulfide ore deposits. Presently many urban centers are also contributing for an extensive contamination in localized areas; especially the Poopó Lake and some rivers are affected by high loads of wastewater and solid waste, in addition to the release of heavy metals and arsenic (As) due to acid mine drainage.

The presence of As in the BA was known to be related to mining only, but recent studies revealed that As of geogenic origin also contributing to the elevated concentration of As in surface and groundwater. The Poopó Lake basin is characterized by a semiarid climate. Geologic formations predominantly are of volcanic origin and groundwater flow is sluggish in nature. These environmental settings have generated substantially elevated concen- trations of geogenic As and other trace elements in surface and groundwater. Both surface and groundwater used for drinking water have high concentrations of As that by far exceed the World Health Organization (WHO) guideline. The overall objective of the present study has been focused on the determination of the sources and principal mechanisms for mobilization of geogenic As into surface and groundwater of the Poopó Lake basin area. More specifically, this study has determined the spatial distribution and the extent of As contamination in surface and groundwater; chemical composition of surface and groundwater, rock and sediment; major geochemical mechanisms for As mobilization from solid phase to aqueous phases. This study also made an assessment of drinking water quality in rural areas within the Poopó Lake basin.

Arsenic concentration exceeded the WHO guideline and national regulations for drinking water of 10 µg/L in 85% of the samples collected from the area around the Poopó Lake (n=27) and 90% of the samples from the southern part of the lake basin (n=42). Groundwater samples collected from drinking water wells had As concentrations up to 623 µg/L, while samples collected from piezometers had even higher up to 3,497 µg/L. Highest concentration in river water samples was observed 117 µg/L. Alkaline nature of water (median pH 8.3 for groundwater and 9.0 for surface water), predominance of Na-Cl-HCO3 water type and elevated Eh reflecting oxidized character has been revealed by As(V) as the major species in As speciation. Different rock types were analyzed for their As content and the highest concentration of 27 mg/kg was found in a coral limestone sample. In evaporate it was 13 mg and 11 mg As/kg was measured in calcareous sandstone. Elevated concentration of As was also observed in sediment cores collected from two drilling sites; 51 mg/kg in Condo K and 36 mg/kg in Quillacas. Physical and chemical weathering of volcanic rocks, limestone, carbonates and plagioclase minerals enhance the supply of Na+ and HCO3- into solution and as a consequence pH and alkalinity increase, which in turn, favor As desorption from solid mineral surfaces (especially Fe(III) oxyhydr- oxides) and therefore dissolved As in water is increased.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. p. x, 39
Series
TRITA-LWR. PHD, ISSN 1650-8602 ; 2015:03
Keywords
Arsenic; Aquifer; Bolivian Altiplano; Boron; Drinking water quality; Geochemistry; Geogenic; Groundwater; Lithium; Trace Elements
National Category
Geochemistry Geosciences, Multidisciplinary
Research subject
Land and Water Resources Engineering
Identifiers
urn:nbn:se:kth:diva-168190 (URN)978-91-7595-580-3 (ISBN)
Public defence
2015-06-11, Sal V1, Teknikringen 76, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Sida - Swedish International Development Cooperation Agency, 7500707606
Note

QC 20150529

Available from: 2015-05-29 Created: 2015-05-27 Last updated: 2022-06-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Ormachea Muñoz, MauricioWern, HannesJohnsson, FredrickBhattacharya, ProsunThunvik, RogerBundschuh, Jochen
By organisation
Land and Water Resources Engineering
In the same journal
Journal of Hazardous Materials
Environmental SciencesOceanography, Hydrology and Water Resources

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 174 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf