Digitala Vetenskapliga Arkivet

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Transcriptomics To Improve Butanol Tolerance of Synechocystis sp Strain PCC 6803
KTH, Skolan för bioteknologi (BIO), Proteomik och nanobioteknologi.ORCID-id: 0000-0002-2430-2682
KTH, Skolan för bioteknologi (BIO), Proteomik och nanobioteknologi.ORCID-id: 0000-0002-4858-8056
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 79, nr 23, s. 7419-7427Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cyanobacteria are emerging as promising hosts for production of advanced biofuels such as n-butanol and alkanes. However, cyanobacteria suffer from the same product inhibition problems as those that plague other microbial biofuel hosts. High concentrations of butanol severely reduce growth, and even small amounts can negatively affect metabolic processes. An understanding of how cyanobacteria are affected by their biofuel product can enable identification of engineering strategies for improving their tolerance. Here we used transcriptome sequencing (RNA-Seq) to assess the transcriptome response of Synechocystis sp. strain PCC 6803 to two concentrations of exogenous n-butanol. Approximately 80 transcripts were differentially expressed at 40 mg/liter butanol, and 280 transcripts were different at 1 g/liter butanol. Our results suggest a compromised cell membrane, impaired photosynthetic electron transport, and reduced biosynthesis. Accumulation of intracellular reactive oxygen species (ROS) scaled with butanol concentration. Using the physiology and transcriptomics data, we selected several genes for overexpression in an attempt to improve butanol tolerance. We found that overexpression of several proteins, notably, the small heat shock protein HspA, improved tolerance to butanol. Transcriptomics-guided engineering created more solvent-tolerant cyanobacteria strains that could be the foundation for a more productive biofuel host.

Ort, förlag, år, upplaga, sidor
2013. Vol. 79, nr 23, s. 7419-7427
Nyckelord [en]
Advanced biofuels, Metabolic process, Photosynthetic electron transport, Product inhibition, Reactive oxygen species, Small heat shock proteins, Solvent-tolerant, Transcriptome response
Nationell ämneskategori
Mikrobiologi
Identifikatorer
URN: urn:nbn:se:kth:diva-139282DOI: 10.1128/AEM.02694-13ISI: 000327544700035PubMedID: 24056459Scopus ID: 2-s2.0-84888217221OAI: oai:DiVA.org:kth-139282DiVA, id: diva2:684634
Forskningsfinansiär
Formas
Anmärkning

QC 20140108

Tillgänglig från: 2014-01-08 Skapad: 2014-01-08 Senast uppdaterad: 2022-06-23Bibliografiskt granskad
Ingår i avhandling
1. Metabolic engineering strategies to increase n-butanol production from cyanobacteria
Öppna denna publikation i ny flik eller fönster >>Metabolic engineering strategies to increase n-butanol production from cyanobacteria
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The development of sustainable replacements for fossil fuels has been spurred by concerns over global warming effects. Biofuels are typically produced through fermentation of edible crops, or forest or agricultural residues requiring cost-intensive pretreatment. An alternative is to use photosynthetic cyanobacteria to directly convert CO2 and sunlight into fuel. In this thesis, the cyanobacterium Synechocystis sp. PCC 6803 was genetically engineered to produce the biofuel n­-butanol. Several metabolic engineering strategies were explored with the aim to increase butanol titers and tolerance.

In papers I-II, different driving forces for n-butanol production were evaluated. Expression of a phosphoketolase increased acetyl-CoA levels and subsequently butanol titers. Attempts to increase the NADH pool further improved titers to 100 mg/L in four days.

In paper III, enzymes were co-localized onto a scaffold to aid intermediate channeling. The scaffold was tested on a farnesene and polyhydroxybutyrate (PHB) pathway in yeast and in E. coli, respectively, and could be extended to cyanobacteria. Enzyme co-localization increased farnesene titers by 120%. Additionally, fusion of scaffold-recognizing proteins to the enzymes improved farnesene and PHB production by 20% and 300%, respectively, even in the absence of scaffold.

In paper IV, the gene repression technology CRISPRi was implemented in Synechocystis to enable parallel repression of multiple genes. CRISPRi allowed 50-95% repression of four genes simultaneously. The method will be valuable for repression of competing pathways to butanol synthesis.

Butanol becomes toxic at high concentrations, impeding growth and thus limiting titers. In papers V-VI, butanol tolerance was increased by overexpressing a heat shock protein or a stress-related sigma factor.

Taken together, this thesis demonstrates several strategies to improve butanol production from cyanobacteria. The strategies could ultimately be combined to increase titers further.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2016. s. 79
Serie
TRITA-BIO-Report, ISSN 1654-2312 ; 2016:4
Nyckelord
cyanobacteria, metabolic engineering, biofuels, butanol, synthetic scaffold, CRISPRi, solvent tolerance
Nationell ämneskategori
Industriell bioteknik
Forskningsämne
Bioteknologi
Identifikatorer
urn:nbn:se:kth:diva-185548 (URN)978-91-7595-927-6 (ISBN)
Disputation
2016-05-27, FD5, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Forskningsrådet FormasKnut och Alice Wallenbergs StiftelseStiftelsen för strategisk forskning (SSF)
Tillgänglig från: 2016-04-22 Skapad: 2016-04-21 Senast uppdaterad: 2022-06-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Sök vidare i DiVA

Av författaren/redaktören
Anfelt, JosefineUhlén, MathiasHudson, Elton Paul
Av organisationen
Proteomik och nanobioteknologi
I samma tidskrift
Applied and Environmental Microbiology
Mikrobiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 453 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf