Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi.
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kvinnors och barns hälsa, Obstetrik & gynekologi.
Vise andre og tillknytning
2014 (engelsk)Inngår i: Behavioural Brain Research, ISSN 0166-4328, E-ISSN 1872-7549, Vol. 259, s. 330-335Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n=14) from healthy controls (n=12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD.

sted, utgiver, år, opplag, sider
2014. Vol. 259, s. 330-335
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-213685DOI: 10.1016/j.bbr.2013.11.003ISI: 000331667700040PubMedID: 24239689OAI: oai:DiVA.org:uu-213685DiVA, id: diva2:683155
Tilgjengelig fra: 2014-01-02 Laget: 2014-01-02 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Frick, AndreasGingnell, MalinFredrikson, MatsFurmark, Tomas
Av organisasjonen
I samme tidsskrift
Behavioural Brain Research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 448 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf