Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulation based population synthesis
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland .
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Transportvetenskap, Trafik och logistik.
2013 (Engelska)Ingår i: Transportation Research Part B: Methodological, ISSN 0191-2615, E-ISSN 1879-2367, Vol. 58, nr SI, s. 243-263Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Microsimulation of urban systems evolution requires synthetic population as a key input. Currently, the focus is on treating synthesis as a fitting problem and thus various techniques have been developed, including Iterative Proportional Fitting (IPF) and Combinatorial Optimization based techniques. The key shortcomings of these procedures include: (a) fitting of one contingency table, while there may be other solutions matching the available data (b) due to cloning rather than true synthesis of the population, losing the heterogeneity that may not have been captured in the microdata (c) over reliance on the accuracy of the data to determine the cloning weights (d) poor scalability with respect to the increase in number of attributes of the synthesized agents. In order to overcome these shortcomings, we propose a Markov Chain Monte Carlo (MCMC) simulation based approach. Partial views of the joint distribution of agent's attributes that are available from various data sources can be used to simulate draws from the original distribution. The real population from Swiss census is used to compare the performance of simulation based synthesis with the standard IPF. The standard root mean square error statistics indicated that even the worst case simulation based synthesis (SRMSE = 0.35) outperformed the best case IPF synthesis (SRMSE = 0.64). We also used this methodology to generate the synthetic population for Brussels, Belgium where the data availability was highly limited.

Ort, förlag, år, upplaga, sidor
2013. Vol. 58, nr SI, s. 243-263
Nyckelord [en]
Markov chain Monte Carlo simulation, Population synthesis, Agent based model, Integrated urban systems planning
Nationell ämneskategori
Transportteknik och logistik
Identifikatorer
URN: urn:nbn:se:kth:diva-138253DOI: 10.1016/j.trb.2013.09.012ISI: 000330082600016Scopus ID: 2-s2.0-84885798000OAI: oai:DiVA.org:kth-138253DiVA, id: diva2:680654
Konferens
13th Conference of the International-Association-of-Travel-Behavior-Research (IATBR), July, 2012, Toronto, Canada
Anmärkning

QC 20140207

Tillgänglig från: 2013-12-18 Skapad: 2013-12-18 Senast uppdaterad: 2017-12-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Bierlaire, MichelFlötteröd, Gunnar
Av organisationen
Trafik och logistik
I samma tidskrift
Transportation Research Part B: Methodological
Transportteknik och logistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 74 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf