Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Texture Based Pattern Recognition Approach to Distinguish Melanoma from Non-Melanoma Cells in Histopathological Tissue Microarray Sections
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
Vise andre og tillknytning
2013 (engelsk)Inngår i: PLOS ONE, E-ISSN 1932-6203, Vol. 8, nr 5, s. e62070-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Aims: Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. Methods and Results: Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157). Conclusion: Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.

sted, utgiver, år, opplag, sider
2013. Vol. 8, nr 5, s. e62070-
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-203296DOI: 10.1371/journal.pone.0062070ISI: 000319107900004OAI: oai:DiVA.org:uu-203296DiVA, id: diva2:636137
Tilgjengelig fra: 2013-07-08 Laget: 2013-07-08 Sist oppdatert: 2021-06-14bibliografisk kontrollert

Open Access i DiVA

fulltext(5516 kB)681 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5516 kBChecksum SHA-512
dc3d1f5d2636ce4ef50c27007d6c21e50bd488347a8253c8f7bd5e30a810954183ae1fddb6f3c5c8eaf68a48a9127dd5b8cf413f7c7f5d9d5ebf5bb9664d27ac
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Rexhepaj, EltonAgnarsdóttir, MargrétBergman, JuliaEdqvist, Per-HenrikBergqvist, MichaelPontén, Fredrik
Av organisasjonen
I samme tidsskrift
PLOS ONE

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 681 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 740 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf