Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Last Glacial Maximum World-Ocean simulation at eddy-permitting resolution – Part 2: Confronting the paleo-proxy data
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .ORCID iD: 0000-0002-1309-5921
Stockholm University, Faculty of Science, Department of Meteorology .
Stockholm University, Faculty of Science, Department of Meteorology .ORCID iD: 0000-0001-8745-7510
Show others and affiliations
2013 (English)In: Climate of the Past Discussions, ISSN 1814-9340, E-ISSN 1814-9359, Vol. 9, p. 329-350Article in journal (Refereed) Published
Abstract [en]

Previous investigations concerning the design of an eddy-permitting LGM oceanic sim- ulation are here extended with focus on whether this type of simulation is capable of improving the numerical results with regard to the available paleo-proxy reconstructions. Consequently, an eddy-permitting and two coarse-grid simulations of the same LGM period are confronted with a dataset from the Multiproxy Approach for the Recon- struction of the Glacial Ocean Sea Surface Temperatures (MARGO SSTs) and a num- ber of sea-ice reconstructions. From a statistical analysis it was found that the eddy- permitting simulation does not significantly improve the SST representation with regard to the paleo-reconstructions. The western boundary currents are better resolved in the high-resolution experiment than in the coarse simulations, but, although these more detailed SST structures yield a locally improved consistency between modelled pre- dictions and proxies, they do not contribute significantly to the global statistical score. As in the majority of the PMIP2 simulations, the modelled sea-ice conditions are still inconsistent with the paleo-reconstructions, probably due to the choice of the model equilibrium. 

Place, publisher, year, edition, pages
2013. Vol. 9, p. 329-350
National Category
Oceanography, Hydrology and Water Resources
Research subject
Atmospheric Sciences and Oceanography
Identifiers
URN: urn:nbn:se:su:diva-88441DOI: 10.5194/cpd-9-329-2013OAI: oai:DiVA.org:su-88441DiVA, id: diva2:611226
Available from: 2013-03-15 Created: 2013-03-15 Last updated: 2022-03-23Bibliographically approved
In thesis
1. The thermohaline circulation during the Last Glacial Maximum and in the Present-Day climate
Open this publication in new window or tab >>The thermohaline circulation during the Last Glacial Maximum and in the Present-Day climate
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The thermohaline circulation (THC) corresponds to the large time- and spatial-scales ocean circulation associated with the transport of heat and salt, and is known to be an important factor controlling the climate variability. The large scales involved in the THC make it difficult to observe, and therefore the synergy of numerical models and climate proxy reconstructions is particularly relevant to study the characteristics of this circulation in the present and past climates.

In this doctoral thesis, the THC during the Last Glacial Maximum (LGM) and the Present-Day (PD) is explored using a state-of-the-art Ocean General Circulation Model in its high- and low-resolution regimes. By comparing the LGM model outputs with the paleo-proxy reconstructions, it is shown that the high-resolution simulation improves the representation of the sea surface tem- peratures in the regions where the current structures appear to be complex, i.e., the western boundary currents (Agulhas, Kuroshio, Gulf Stream) and the Antarctic Circumpolar Current, although statistical comparisons with paleo- proxy reconstructions are not significantly improved on a global scale.

The THC involves a superposition of processes acting at widely different spatial and temporal scales, from the geostrophic large-scale and slowly-varying flow to the mesoscale turbulent eddies and at even smaller-scale, the mixing generated by the internal wave field. Not all these processes can be properly resolved in numerical models, and thus need to be parameterized. Analyzing the THC in an eddy-permitting numerical model, it was found that the temporal scales required for diagnosing the Southern Ocean circulation should not exceed 1 month and the spatial scales needed to be taken into account must be smaller than 1°. Important changes in the nature and intensity of the THC were observed between the LGM and PD simulations. An estimation of the turnover times (i.e., the time it takes for the water parcel to make and entire loop on the Conveyor Belt) revealed that the LGM THC could be more vigorous than under the PD conditions. As a result, the ocean transports of heat and freshwater, the oceanic uptake of CO2, the ventilation of the deep ocean and the reorganization of the passive and active tracers (e.g., temperature, salinity, greenhouse gases, nutrients) can be altered in these different regimes.

Place, publisher, year, edition, pages
Stockholm: Department of Meteorology, Stockholm University, 2013. p. 52
Keywords
ocean model, circulation, LGM
National Category
Oceanography, Hydrology and Water Resources
Research subject
Atmospheric Sciences and Oceanography
Identifiers
urn:nbn:se:su:diva-89011 (URN)978-91-7447-697-2 (ISBN)
Public defence
2013-05-24, Högbomsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Manuscript. 

Available from: 2013-05-02 Created: 2013-04-08 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Ballarotta, MaximeDöös, KristoferLundberg, PeterBrodeau, Laurent
By organisation
Department of Meteorology
In the same journal
Climate of the Past Discussions
Oceanography, Hydrology and Water Resources

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 385 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf