Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Extracting Patterns from Socioeconomic Databases to Characterize Small Farmers with High and Low Corn Yields in Mozambique: a Data Mining Approach
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Vise andre og tillknytning
2012 (engelsk)Inngår i: Advances in Data Mining: Workshop Proceedings / [ed] Isabelle Bichindaritz, Petra Perner, Georg Ruß, Rainer Schmidt, Ibai Publishing , 2012, 99-108 s.Konferansepaper, Publicerat paper (Annet vitenskapelig)
Abstract [en]

Mozambique is mainly a rural country. Agriculture is a pillar of the Mozambique economy and is the main source of income for 80% of the population living in rural areas. One of the major problems in the agricultural sector is low productivity, which for most crops is the lowest in Africa. The main food crop cultivated in Mozambique is maize. This research aims to characterize households with high and low maize yields based on the National Agricultural Survey Data from 2007 and 2008 using a data mining approach. To this end, we used: a) decision trees, b) association rules, and c) classification rules. The results show that households with high maize yields are those with the capacity to generate income through the commercialization of their production and agricultural assets. Households with low maize yields are associated with production loss before harvest which results in food insecurity.

sted, utgiver, år, opplag, sider
Ibai Publishing , 2012. 99-108 s.
Emneord [en]
Data Mining, Maize, Decision Trees, Association Rules, Classification Rules, Mozambique
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-82235ISBN: 978-3-942952-10-0 (print) (tryckt)OAI: oai:DiVA.org:su-82235DiVA: diva2:567212
Konferanse
12th Industrial Conference, ICDM 2012, Berlin, Germany, July 13-20, 2012
Merknad

Workshop Data Mining in Agriculture

Tilgjengelig fra: 2012-11-12 Laget: 2012-11-12 Sist oppdatert: 2013-02-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Søk i DiVA

Av forfatter/redaktør
Sotomane, ConstantinoAsker, LarsBoström, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

Totalt: 61 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf