Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Choice of Dimensionality Reduction Methods for Feature and Classifier Fusion with Nearest Neighbor Classifiers
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2012 (engelsk)Inngår i: 15th International Conference on Information Fusion, IEEE Computer Society Digital Library, 2012, 875-881 s.Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Often high dimensional data cause problems for currently used learning algorithms in terms of efficiency and effectiveness. One solution for this problem is to apply dimensionality reduction by which the original feature set could be reduced to a small number of features while gaining improved accuracy and/or efficiency of the learning algorithm. We have investigated multiple dimensionality reduction methods for nearest neighbor classification in high dimensions. In previous studies, we have demonstrated that fusion of different outputs of dimensionality reduction methods, either by combining classifiers built on reduced features, or by combining reduced features and then applying the classifier, may yield higher accuracies than when using individual reduction methods. However, none of the previous studies have investigated what dimensionality reduction methods to choose for fusion, when outputs of multiple dimensionality reduction methods are available. Therefore, we have empirically investigated different combinations of the output of four dimensionality reduction methods on 18 medicinal chemistry datasets. The empirical investigation demonstrates that fusion of nearest neighbor classifiers obtained from multiple reduction methods in all cases outperforms the use of individual dimensionality reduction methods, while fusion of different feature subsets is quite sensitive to the choice of dimensionality reduction methods.

sted, utgiver, år, opplag, sider
IEEE Computer Society Digital Library, 2012. 875-881 s.
Emneord [en]
machine learning, nearest neighbor classifier, dimensionality reduction, feature fusion, classifier fusion
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-82219ISBN: 978-1-4673-0417-7 (tryckt)ISBN: 978-0-9824438-4-2 (tryckt)OAI: oai:DiVA.org:su-82219DiVA: diva2:567196
Konferanse
15th International Conference on Information Fusion, 9-12 July 2012, Singapore
Tilgjengelig fra: 2012-11-12 Laget: 2012-11-12 Sist oppdatert: 2013-04-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Søk i DiVA

Av forfatter/redaktør
Deegalla, SampathBoström, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

Totalt: 14 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf