Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Genotoxicity of alcohol is linked to DNA replication-associated damage and homologous recombination repair
Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
Show others and affiliations
(English)In: Carcinogenesis, ISSN 0143-3334, E-ISSN 1460-2180Article in journal (Refereed) Submitted
National Category
Other Biological Topics
Research subject
Molecular Genetics
Identifiers
URN: urn:nbn:se:su:diva-78808OAI: oai:DiVA.org:su-78808DiVA, id: diva2:544148
Available from: 2012-08-13 Created: 2012-08-13 Last updated: 2022-02-24Bibliographically approved
In thesis
1. Interstrand Crosslinks - Induction and repair
Open this publication in new window or tab >>Interstrand Crosslinks - Induction and repair
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

DNA crosslinking agents exhibit a variety of DNA lesions, such as monoadducts, DNA-DNA interstrand or intrastrand crosslinks or DNA-protein crosslinks. Agents that produce interstrand crosslinks (ICLs) exist naturally and are widely used in chemotherapy. Therefore, it is important to understand how the lesions induced by these agents are repaired. In bacteria, the repair is mainly dependent on nucleotide excision repair (NER) together with homologous recombination (HR) or translesion synthesis (TLS). In human cells, it is not clear how these lesions are repaired, and it is believed to be a more complicated process in which NER does not play as important a role as in prokaryotes. Here, we investigated the repair mechanisms mainly after treatment with psoralen but also with acetaldehyde, cisplatin and mitomycin C in some studies. As expected from studies on plasmids and in bacteria, we used new techniques to confirm that various ICL-inducing agents block replication fork elongation in mammalian cells. We also found that the replication fork was unable to bypass these lesions. We confirmed that ERCC1/XPF and the HR proteins BRCA2 and XRCC2/3 are vital for protection against ICL treatments. These proteins were also found to be equally important for the repair of monoadducts. To better understand ICL repair in mammalian cells, we developed a method to study the induction and unhooking of ICL in human fibroblasts. We found that ICLs were repaired and that 50% of the induced ICLs were unhooked within 3 hours following exposure. Additionally, we determined that XPA, but not XPE, is involved in ICL unhooking, although not affecting lethality. A step in ICL repair is the formation of double-strand breaks (DSBs), and we identified a replication-dependent formation of DSBs following ICL treatment. Furthermore, ERCC1/XPF was not necessary for DSB formation. The repair of these DSBs was performed by HR and involved ERCC1/XPF. Additionally, we were able to quantify the ICL unhooking in human fibroblasts and found that they can unhook ~2500 ICL/h. We also determined that a dose of approximately 400 ICL/cell is lethal to 50% of the cells, indicating that ICL unhooking is not the most critical step during the repair process.

Abstract [sv]

DNA-skadande ämnen är vanligt i cancerbehandling, då snabbt växande celler, såsom cancerceller är betydligt känsligare än normala celler för DNA skador. En grupp av ämnen som vanligen används i cancerbehandling är korsbindare av DNA. Dessa ämnen kommer reagera två gånger med DNA och skapa två bindningar mitt emot varandra. DNA strängen, som består av två delar, måste kunna separeras och kopieras (replikation) på ett tillförlitligt sätt för att cellerna ska kunna dela sig och bli flera. DNA strängen måste också kunna dela sig och bli avläst rätt för att nya proteiner ska kunna bildas (transkription). När korsbindarna har bundit till DNA strängarna, hindrar detta deras separation och därigenom förhindras även avläsningen och kopieringen.  För att göra undersökningarna av DNA korsbindande ämnen ännu lite svårare, så ger korsbindare flera olika typer av skador. Dels kan det bli flera olika typer av korsbindningar, både mellan två DNA-strängar (ICL) vilket är den farligaste och mest svårreparerade typen, men det kan också ske inom samma DNA-sträng (intrastrand crosslink) eller mellan en DNA-sträng och ett protein (DNA-protein crosslink). Korsbindare kan även bilda enbindningsskador (monoaddukt), vilket innebär den bara binder en gång till DNA.

För att cellen ska kunna överleva, så måste den reparera skadorna och ta bort korsbindningen eller monoaddukten. Hur detta sker i människor är inte helt klarlagt men det verkar som det sker i flera steg. Till att börja med klipps DNA sönder i ena strängen på båda sidorna om korsbindningen, detta gör att den kvarvarande delen av korsbindningen kan böjas bort. Därefter kommer cellen att skapa nytt DNA för att fylla mellanrummet som bildats. Cellen använder sig av den andra DNA strängen som mall för att sätta in rätt DNA baser, men i fallet med korsbindande ämnen så är även den strängen skadad och därför finns det en stor risk för att fel DNA baser sätts in och då uppstår mutationer. Nästa steg är att klippa den kvarvarande delen av korsbindningen, även denna gång skapas ett mellanrum som måste fyllas med nya baser.

Den första artikeln i avhandlingen handlar om att försöka reda ut om det är ICLen eller monoaddukten som är orsak till olika effekter som påträffas efter behandling med korsbindande ämnen. Det vi fann var att även om det bara var från ICLs som vi kunde mäta en effekt på replikationen, så fick vi nästan lika stark effekt från monoaddukterna, som från ICL, för en av de vanligast använda markörerna (kännetecknen) för båda DNA strängarna var brutna på samma ställe (dubbelstränsbrott). Detta berodde dock inte på att även monoaddukterna skapade dubbelsträngsbrott, utan på att markören vi använde var ospecifik. Vi fann även att även om ICLs har mycket större effekt än monoaddukten på cellens överlevnad m.m., så kan man inte bortse ifrån effekten av monoaddukten och att den troligen har en betydande roll för de korsbindande ämnen som endast ger en liten del ICLs.

I artikel två har vi utvecklat en ny metod, som gör det möjligt att mäta hur många ICLs som bildas vid en viss dos av de korsbindande ämnen vi undersöker. Vi kan även mäta hur fort ICLerna kan repareras i mänskliga celler med hjälp av metoden. Tack vare en kombination av våra mätningar och med hjälp av datorsimuleringar, kunde vi räkna ut hur många ICLs som bildades per dos för tre vanliga korsbindare. Vi kunde även visa att 50 % av ICLen har påbörjat reparationen och kommit så långt att de var bortklippta från ena stängen inom 3 timmar efter behandlingen.

I artikel tre undersöker vi vilka proteiner som är inblandade i den tidiga delen av ICL reparationen, alltså fram till och med att celler klipper ut korsbindningen på båda sidorna om skadan i ena strängen. Här visar vi att celler som är defekta i reparationsprotein kallat XPA, har en betydligt långsammare borttagning av ICLer än vad båda normala celler och celler defekta i reparationsprotein XPE har. Vi visar även att detta inte påverkar cellens replikationshastighet, eller har någon effekt på cellens överlevnad.

Den fjärde artikeln handlar om acetaldehyd, som bildas när alkohol förbränns i kroppen. Acetaldehyd har föreslagits bilda ICL och därför undersökte vi vilka effekter den har på cellerna. Vi visar i den här artikeln att det krävs nysyntes av DNA för att acetaldehyd ska leda till dubbelsträngsbrott. Celler kan reparera dessa dubbelsträngsbrott med hjälp av reparationssystem, som kallas homolog rekombination, men att reparationen ibland blir felaktig.

I den femte och sista artikeln i avhandligen undersöker vi ett av de vanligast föreslagna proteinen för att sköta klippningen av DNA (ERCC1/XPF) och hur den är inblandad i reparationen av korsbindningar. Vi kan här visa att även det krosbindande ämnet mitomycin C bromsar replikationshastigheter och att ERCC1/XPF är nödvändigt för att kunna fullfölja homolog rekombination av ICLs.

Place, publisher, year, edition, pages
Stockholm: Department of Genetics, Microbiology and Toxicology, Stockholm University, 2012. p. 90
Keywords
ICL, DNA repair, interstrand crosslink, psoralen
National Category
Biochemistry and Molecular Biology
Research subject
Molecular Genetics
Identifiers
urn:nbn:se:su:diva-78797 (URN)978-91-7447-546-3 (ISBN)
Public defence
2012-09-21, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Submitted. Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Submitted.

Available from: 2012-08-30 Created: 2012-08-13 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Kotova, NataliaVare, DanielSchultz, NiklasHelleday, ThomasJenssen, Dag
By organisation
Department of Genetics, Microbiology and Toxicology
In the same journal
Carcinogenesis
Other Biological Topics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 187 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf