Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
TD Kernel DM+V: time-dependent statistical gas distribution modelling on simulated measurements
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Mobile Robot and Olfaction Lab)
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Mobile Robot and Olfaction Lab)ORCID-id: 0000-0003-3272-4145
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Mobile Robot and Olfaction Lab)ORCID-id: 0000-0002-3122-693X
Örebro universitet, Akademin för naturvetenskap och teknik. (AASS Mobile Robot and Olfaction Lab)ORCID-id: 0000-0003-0217-9326
2011 (engelsk)Inngår i: Olfaction and Electronic Nose: proceedings of the 14th International Symposium on Olfaction and Electronic Nose (ISOEN) / [ed] Perena Gouma, Springer Science+Business Media B.V., 2011, s. 281-282Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

To study gas dispersion, several statistical gas distribution modelling approaches have been proposed recently. A crucial assumption in these approaches is that gas distribution models are learned from measurements that are generated by a time-invariant random process. While a time-independent random process can capture certain fluctuations in the gas distribution, more accurate models can be obtained by modelling changes in the random process over time. In this work we propose a time-scale parameter that relates the age of measurements to their validity for building the gas distribution model in a recency function. The parameters of the recency function define a time-scale and can be learned. The time-scale represents a compromise between two conflicting requirements for obtaining accurate gas distribution models: using as many measurements as possible and using only very recent measurements. We have studied several recency functions in a time-dependent extension of the Kernel DM+V algorithm (TD Kernel DM+V). Based on real-world experiments and simulations of gas dispersal (presented in this paper) we demonstrate that TD Kernel DM+V improves the obtained gas distribution models in dynamic situations. This represents an important step towards statistical modelling of evolving gas distributions.

sted, utgiver, år, opplag, sider
Springer Science+Business Media B.V., 2011. s. 281-282
Serie
AIP Conference Proceedings ; 1362
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:oru:diva-24101DOI: 10.1063/1.3651651ISBN: 978-0-7354-0920-0 (tryckt)OAI: oai:DiVA.org:oru-24101DiVA, id: diva2:540989
Konferanse
14th International Symposium on Olfaction and Electronic Nose (ISOEN), New York City, NY, USA, May 2-5, 2011
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, FP7-224318-DIADEMTilgjengelig fra: 2012-08-02 Laget: 2012-07-13 Sist oppdatert: 2018-03-14bibliografisk kontrollert

Open Access i DiVA

fulltext(102 kB)516 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 102 kBChecksum SHA-512
b3f3a7381a55bb22ff844d3abd43860d4dd56a461d36d7b8588265a02dfc5d340c1ff54bd572a0e6aa362211c1f95a0116c8718668ba0193fe0f376912e89419
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Asadi, SaharPashami, SepidehLoutfi, AmyLilienthal, Achim J.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 516 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 625 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf