Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Obtaining accurate and comprehensible classifiers using oracle coaching
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2012 (engelsk)Inngår i: Intelligent Data Analysis, ISSN 1088-467X, E-ISSN 1571-4128, Vol. 16, nr 2, 247-263 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

While ensemble classifiers often reach high levels of predictive performance, the resulting models are opaque and hence do not allow direct interpretation. When employing methods that do generate transparent models, predictive performance typically has to be sacrificed. This paper presents a method of improving predictive performance of transparent models in the very common situation where instances to be classified, i.e., the production data, are known at the time of model building. This approach, named oracle coaching, employs a strong classifier, called an oracle, to guide the generation of a weaker, but transparent model. This is accomplished by using the oracle to predict class labels for the production data, and then applying the weaker method on this data, possibly in conjunction with the original training set. Evaluation on 30 data sets from the UCI repository shows that oracle coaching significantly improves predictive performance, measured by both accuracy and area under ROC curve, compared to using training data only. This result is shown to be robust for a variety of methods for generating the oracles and transparent models. More specifically, random forests and bagged radial basis function networks are used as oracles, while J48 and JRip are used for generating transparent models. The evaluation further shows that significantly better results are obtained when using the oracle-classified production data together with the original training data, instead of using only oracle data. An analysis of the fidelity of the transparent models to the oracles shows that performance gains can be expected from increasing oracle performance rather than from increasing fidelity. Finally, it is shown that further performance gains can be achieved by adjusting the relative weights of training data and oracle data.

sted, utgiver, år, opplag, sider
2012. Vol. 16, nr 2, 247-263 s.
Emneord [en]
Classification, comprehensibility, decision trees, decision lists, oracle coaching
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-76744DOI: 10.3233/IDA-2012-0522ISI: 000301366100007OAI: oai:DiVA.org:su-76744DiVA: diva2:527207
Merknad

4

Tilgjengelig fra: 2012-05-18 Laget: 2012-05-16 Sist oppdatert: 2013-01-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Boström, Henrik
Av organisasjonen
I samme tidsskrift
Intelligent Data Analysis

Søk utenfor DiVA

GoogleGoogle Scholar

Altmetric

Totalt: 26 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf