Åpne denne publikasjonen i ny fane eller vindu >>Vise andre…
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]
Potassium 2-N,N-dialkylamino-1,1-bis(trimethylsilyl)silen-2-olates (or amide silenolates, silicon analogues of amide enolates) were synthesized through reaction of N,N-dialkyl-tris(trimethylsilyl)silylmethaneamides with potassium tert-butoxide, and these 2-N,N-dialkylaminosilen-2-olates display remarkable thermal stabilities (e.g., merely 37% decomposition after 8 h at 90 ºC). The crystal structure of one of the potassium 2-N,N-dialkylaminosilen-2-olates, without potassium ion chelating agent, reveals a more pyramidal configuration around the Si atom than found in previously reported silenolates, indicating a strong localization of the negative charge to this atom. The reactivities of the potassium 2-N,N-dialkylaminosilen-2-olates are in part similar to those of previous lithium and potassium silenolates as they are alkylated with MeI at Si. However, they do not react with dienes to yield [4+2] cycloadducts, the customary adducts of silenolates and reverse polarized silenes, but instead initiate anionic diene polymerization. Consequently, they display silyl anion-like rather than silene-like reactivities. Finally, we find that potassium 2-aminosilen-2-olates with N,N-diphenylamino instead of N,N-dialkylamino substitution decompose rapidly to potassium diphenylamide, carbon monoxide, and silylenes. Clearly, if the substituent at the 2-position of a silenolate is able to accept and stabilize negative charge, such as NPh2, then this silenolate will be prone to decompose.
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-169783 (URN)
2012-03-062012-03-062012-04-19