Thin polymer films are used in many applications such as paint, paper coatings and electronic devices. For these applications, it is important to have knowledge about the film formation process, since it affect the film morphology and the morphology is important for the applications.One method for studying film formation in situ is fluorescence microscopy. By labeling a target molecule or particle with a fluorophore, the targets movements can be traced as the solvent evaporates [1-3]. If information gained from studies of particle movements during film formation and wet state behavior are combined, information about the film formation process can be obtained. Examination of the final film surfaces with regular light microscopy and AFM gives additional information about the film formation.These methods have been used for studying the formation of negatively charged latex films. It was shown that the films are greatly affected by adding positively charged surfactants [4-5]. Since latex is a water-based system it has relatively long drying times. Systems based on high-vapor pressure organic solvents have much shorter drying times and the film formation occurs under non-equilibrium conditions. This results in incomplete phase separation, which in turn gives microstructures in the film. These microstructures are of great interest since they affect the properties of the film and its function [6-7]. Our aim is to develop the methods used for latex studies in order to be able to apply them to study film formation of polymer blends used for photovoltaic applications. The goal is to get more knowledge about the film forming process and a deeper understanding about the mechanisms behind the formation of microstructures.[1] Carlsson G., Warszynski P., van Stam J., J. Colloid Interface Sci., 2003, 267, 500-508[2] Carlsson G., van Stam J., Nord. Pulp Pap. Res. J., 2005, 20, 192-199[3] Carlsson G., Järnström L., van Stam J., J. Colloid Interface Sci., 2006, 298, 162-171[4] Heidkamp H., Master thesis, Karlstad University 2009.[5] Paakkonen, J., Master thesis, Karlstad University 2010.[6] Björström C.M., Magnusson K.O., Moons E., Synth. Metals, 2005, 152, 109-112[7] Moons E., J. Phys.: Condens. Matter, 2002, 14, 12235-12260
2010. p. 49-
Molecular Processes at Solid Surfaces 10th Annual Surface and Colloid Symposium, 24-26 November 2010, Lund