Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mitotic recombination in mammalian cells
Stockholms universitet.
2000 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Recombination is usually defined as the exchange of genetic material between two strands or regions of nucleic acids. This process occurs in all known organisms and is highly conserved, especially among higher eukaryotes. Various types of recombination, involving homologous or non-homologous nucleic acid sequences, are known to exist. Recombination is a double-edged sword that may be beneficial or harmful for the cell. On one hand, it fulfills essential functions in connection with, e.g., repair of DNA double- strand breaks and maintenance of genomic stability; but, at the same time, this process is also partly responsible for, among other things, error prone repair and genomic instability, which can lead to cancer.

The aim of the present study has been to investigate molecular mechanisms underlying spontaneous and induced mitotic recombination in mammalian cells and, in particular, to characterize the role of the RAD51 protein in these processes. For this purpose, V79 Chinese hamster cell lines containing spontaneous partial duplications of the hprt gene were employed. A new approach to investigate homologous recombination, which offers the unique possibility of determining the type of homologous recombination involved, was developed. This assay procedure was compared to other systems used previously for detection of induced recombination. Use of this newly developed method to characterize mechanisms underlying induction of homologous recombination revealed that inhibition of DNA synthesis is a potent pathway for such induction.

Subsequently, the effect of overexpressing RAD51 on two different assays for recombination was determined. Our findings suggest that the RAD51 protein supports spontaneous homologous recombination via an exchange mechanism, as well as being involved in spontaneous non-homologous recombination, possibly with respect to class switch recombination. However, RAD51 was found not to affect induced non-homologous recombination, suggesting that this protein might not be involved in repairing DNA damage via non-homologous end-joining.

Finally, the repair of DNA double-strand breaks induced in the S phase of the cell cycle was examined. Our observations in this case suggest that homologous recombination by strand invasion, employing an exchange mechanism, is a major feature of such repair and, furthermore, that a functional pathway for recombination is essential for the survival of cells in which DNA double-strand breaks have occurred.

In summary, the work described here improves our understanding of the molecular mechanisms underlying spontaneous and induced recombination, as well as the repair of DNA double-strand breaks in mammalian cells.

sted, utgiver, år, opplag, sider
Stockholm: Stockholm University, 2000. , s. 60
HSV kategori
Forskningsprogram
toxikologisk genetik
Identifikatorer
URN: urn:nbn:se:su:diva-69982Libris ID: 7629932ISBN: 91-7265-135-0 (tryckt)OAI: oai:DiVA.org:su-69982DiVA, id: diva2:478424
Disputas
2000-09-15, 10:00
Opponent
Merknad

Härtill 6 uppsatser

Tilgjengelig fra: 2012-01-16 Laget: 2012-01-16 Sist oppdatert: 2019-01-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

PDF (Not accessible to users outside Sweden)
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 418 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf