Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Experimental study of filtration of fiber suspensions: Part I: fluid velocity and fluid-fiber interactionmeasurements
KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.ORCID-id: 0000-0003-3737-0091
2008 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

A study of the flow in the direct vicinity of a forming wire and a fiber network during forming is reported. The measurements are performed with Particle Image Velocimetry in a scaled system. Index-of-refraction matching is used to gain optical access to the flow. Time resolved measurements of the flow velocity in the vertical and horizontal direction is obtained in a plane with a size of 60×40 fiber diameters. Data is obtained for three drainage velocities and two different lengths of the fibers. The relative level of the velocity fluctuationsis found to decrease with drainage velocity and is higher in the flow above a network mat of shorter fibers compared to the network made of longer fibers

sted, utgiver, år, opplag, sider
2008. , s. 22
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-34543OAI: oai:DiVA.org:kth-34543DiVA, id: diva2:421959
Merknad
QC 20110610Tilgjengelig fra: 2011-06-10 Laget: 2011-06-10 Sist oppdatert: 2011-06-10bibliografisk kontrollert
Inngår i avhandling
1. Experimental Studies of Complex Flows through Image-Based Techniques
Åpne denne publikasjonen i ny fane eller vindu >>Experimental Studies of Complex Flows through Image-Based Techniques
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis deals with the development of experimental techniques for the study of complex flows inspired to a large extent by the papermaking process. In particular one part of this thesis is devoted to the development of laboratory experiments based on index-of-refraction matching and imaging techniques to study the behavior of dilute and concentrated suspension of elongated particles. Another part is aimed at exploring the potential of the synergy between experiments and numerical simulations to access quantities otherwise not-measurable in complex flows. Highspeedimaging experiments have been specifically designed for this purpose.

The first of the Refractive IndexMatching (RIM) experiment was aimed at studying the flow generated during the filtration of a fiber suspension using Particle Image Velocimetry (PIV) and pressure drop measurements. The experiments were performed in a vertical laboratory filtration device. Index of refraction matching of fibers and fluids allowed measurements to be performed in the proximity and, to some extent, in the forming network during filtration. The area over which the forming network induces velocity gradients has been measured and have been found to be independent of the Reynolds number but dependent on the fiber length and the structure of the network. Analysis of the flow scales in the proximity of the network showed that the signature of the mesh used to filter the suspension is never completely suppressed as the network thickness increases. Also, pressure drop measurements over a static fiber network have been performed. A linear dependence of the pressure drop with the basis weight (mass of fibers in the network per unit area) and a non-dimensional filtration resistance independent of filtration velocity and network thickness (if network compressibility is accounted for) was found. These findings can help explain characteristics that are observed on paper sheets and help improvede watering efficiency.

The second RIM experiment was aimed at measuring the interactions of Taylorscale elongated particles with turbulence. RIM particles with embedded tracers and Stereoscopic PIV were combined to simultaneously measure fluid phase and particle velocity. The novelty of this technique is that it allows to measure the three-dimensional angular velocity vector of arbitrarily shaped particles. This technique was applied to study the interaction of neutrally buoyant ellipsoidal particles with stationary homogeneous isotropic turbulence. The results were compared to the case of spherical particles. The main result is that both spherical and ellipsoidal particles provide enhancement of the small scales and reduction of the large scales at volume concentrations as low as 0.1%. However, the reduction of the large scales was much more evident for spherical particles. These results highlight the fact that particle elongation introduces different mechanisms of turbulent modulation as compared to the spherical particles.

The first of the high-speed imaging experiments was to provide a database for test and validation of a CFD-based flow observer for complex flows. For this purpose time resolved measurements of a turbulent confined jet have been performed with high-speed PIV. The measurements have been used both as a feedback signal and as a reference for the evaluation of a CFD-based estimator for complex flows. Furthermore, based on the measurements Kalman filters have been designed and implemented in the observer. The experimental data have also been used to compare two modal decompositions, namely Proper Orthogonal Decomposition and Dynamical Modal Decomposition and evaluate their ability to describe the global behavior of complex flow.

The second of the high-speed imaging experiment was applied to study spreading of a droplet on a solid surface. These experiments have been performed with extremely high time-resolution (140000 fps), over a range of parameters (in terms of droplet viscosity, equilibrium contact angle and droplet size) larger than any other experiment reported in the literature in a single work. By combining the experiments and direct numerical simulations a dissipative mechanisms arising from the contact line movement has been identified and the corresponding macroscopic coefficient has been measured.i

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2011. s. viii, 56
Serie
Trita-MEK, ISSN 0348-467X ; 2001:03
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-33821 (URN)978-91-7415-988-2 (ISBN)
Disputas
2011-05-19, Sal D1, Lindstedtsvägen 17, KTH, Stockholm, 10:15 (engelsk)
Opponent
Veileder
Merknad
QC 20110519Tilgjengelig fra: 2011-05-19 Laget: 2011-05-19 Sist oppdatert: 2011-06-10bibliografisk kontrollert

Open Access i DiVA

fulltext(1585 kB)212 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1585 kBChecksum SHA-512
64588534f83c0b55d3feb01a231a0b46a02ad980996cb3d92e6a149db617ea4addd519b9b24d816c07fd112ea424ef441d5f98238b3c329202dbc6e05f9399e3
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Bellani, GabrieleLundell, FredrikSöderberg, L. Daniel
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 212 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 240 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf