Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A stable and efficient hybrid scheme for viscous problems in complex geometries
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys. (Waves and Fluids)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys. (Waves and Fluids)
2007 (Engelska)Ingår i: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 226, s. 1291-1309Artikel i tidskrift (Refereegranskat) Published
Ort, förlag, år, upplaga, sidor
2007. Vol. 226, s. 1291-1309
Nationell ämneskategori
Beräkningsmatematik Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:uu:diva-11185DOI: 10.1016/j.jcp.2007.05.018ISI: 000250209700006OAI: oai:DiVA.org:uu-11185DiVA, id: diva2:38953
Tillgänglig från: 2007-09-21 Skapad: 2007-09-21 Senast uppdaterad: 2018-01-12Bibliografiskt granskad
Ingår i avhandling
1. Hybrid Methods for Unsteady Fluid Flow Problems in Complex Geometries
Öppna denna publikation i ny flik eller fönster >>Hybrid Methods for Unsteady Fluid Flow Problems in Complex Geometries
2007 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In this thesis, stable and efficient hybrid methods which combine high order finite difference methods and unstructured finite volume methods for time-dependent initial boundary value problems have been developed. The hybrid methods make it possible to combine the efficiency of the finite difference method and the flexibility of the finite volume method.

We carry out a detailed analysis of the stability of the hybrid methods, and in particular the stability of interface treatments between structured and unstructured blocks. Both the methods employ so called summation-by-parts operators and impose boundary and interface conditions weakly, which lead to an energy estimate and stability.

We have constructed and analyzed first-, second- and fourth-order Laplacian based artificial dissipation operators for finite volume methods on unstructured grids. The first-order artificial dissipation can handle shock waves, and the fourth-order artificial dissipation eliminates non-physical numerical oscillations efficiently.

A stable hybrid method for hyperbolic problems has been developed. It is shown that the stability at the interface can be obtained by modifying the dual grid of the unstructured finite volume method close to the interface. The hybrid method is applied to the Euler equation by the coupling of two stand-alone CFD codes. Since the coupling is administered by a third separate coupling code, the hybrid method allows for individual development of the stand-alone codes. It is shown that the hybrid method is an accurate, efficient and practically useful computational tool that can handle complex geometries and wave propagation phenomena.

Stable and accurate interface treatments for the linear advection–diffusion equation have been studied. Accurate high-order calculation are achieved in multiple blocks with interfaces. Three stable interface procedures — the Baumann–Oden method, the “borrowing” method and the local discontinuous Galerkin method, have been investigated. The analysis shows that only minor differences separate the different interface handling procedures.

A conservative stable and efficient hybrid method for a parabolic model problem has been developed. The hybrid method has been applied to the full Navier–Stokes equations. The numerical experiments support the theoretical conclusions and show that the interface coupling is stable and converges at the correct order for the Navier–Stokes equations.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2007. s. 28
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 374
Nyckelord
hybrid methods, finite difference methods, finite volume methods, coupling procedure, stability, efficiency, artificial dissipation
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-8341 (URN)978-91-554-7046-3 (ISBN)
Disputation
2007-12-20, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2007-11-29 Skapad: 2007-11-29 Senast uppdaterad: 2011-10-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Gong, JingNordström, Jan
Av organisationen
Avdelningen för teknisk databehandlingNumerisk analys
I samma tidskrift
Journal of Computational Physics
BeräkningsmatematikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 668 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf