Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Temporal pattern discovery in longitudinal electronic patient records
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
Vise andre og tillknytning
2010 (engelsk)Inngår i: Data mining and knowledge discovery, ISSN 1384-5810, E-ISSN 1573-756X, Vol. 20, nr 3, 361-387 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Large collections of electronic patient records provide a vast but still underutilised source of information on the real world use of medicines. They are maintained primarily for the purpose of patient administration, but contain a broad range of clinical information highly relevant for data analysis. While they are a standard resource for epidemiological confirmatory studies, their use in the context of exploratory data analysis is still limited. In this paper, we present a framework for open-ended pattern discovery in large patient records repositories. At the core is a graphical statistical approach to summarising and visualising the temporal association between the prescription of a drug and the occurrence of a medical event. The graphical overview contrasts the observed and expected number of occurrences of the medical event in different time periods both before and after the prescription of interest. In order to effectively screen for important temporal relationships, we introduce a new measure of temporal association, which contrasts the observed-to-expected ratio in a time period immediately after the prescription to the observed-to-expected ratio in a control period 2 years earlier. An important feature of both the observed-to-expected graph and the measure of temporal association is a statistical shrinkage towards the null hypothesis of no association, which provides protection against highlighting spurious associations. We demonstrate the usefulness of the proposed pattern discovery methodology by a set of examples from a collection of over two million patient records in the United Kingdom. The identified patterns include temporal relationships between drug prescriptions and medical events suggestive of persistent and transient risks of adverse events, possible beneficial effects of drugs, periodic co-occurrence, and systematic tendencies of patients to switch from one medication to another.

sted, utgiver, år, opplag, sider
2010. Vol. 20, nr 3, 361-387 s.
Emneord [en]
Temporal pattern discovery, Longitudinal patient records, Electronic health records
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-50142DOI: 10.1007/s10618-009-0152-3ISI: 000276276100003OAI: oai:DiVA.org:su-50142DiVA: diva2:380560
Merknad
authorCount :5Tilgjengelig fra: 2010-12-21 Laget: 2010-12-21 Sist oppdatert: 2010-12-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Norén, G. Niklas
Av organisasjonen
I samme tidsskrift
Data mining and knowledge discovery

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 21 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf