Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parallell interacting MCMC for learning of topologies of graphical models
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Matematisk statistik.ORCID-id: 0000-0003-1489-8512
2008 (engelsk)Inngår i: Data mining and knowledge discovery, ISSN 1384-5810, E-ISSN 1573-756X, Vol. 17, nr 3, 431-456 s.Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Automated statistical learning of graphical models from data has attained a considerable degree of interest in the machine learning and related literature. Many authors have discussed and/or demonstrated the need for consistent stochastic search methods that would not be as prone to yield locally optimal model structures as simple greedy methods. However, at the same time most of the stochastic search methods are based on a standard Metropolis-Hastings theory that necessitates the use of relatively simple random proposals and prevents the utilization of intelligent and efficient search operators. Here we derive an algorithm for learning topologies of graphical models from samples of a finite set of discrete variables by utilizing and further enhancing a recently introduced theory for non-reversible parallel interacting Markov chain Monte Carlo-style computation. In particular, we illustrate how the non-reversible approach allows for novel type of creativity in the design of search operators. Also, the parallel aspect of our method illustrates well the advantages of the adaptive nature of search operators to avoid trapping states in the vicinity of locally optimal network topologies.

sted, utgiver, år, opplag, sider
2008. Vol. 17, nr 3, 431-456 s.
Emneord [en]
MCMC, Equivalence search, Learning graphical models, chain monte-carlo, markov equivalence classes, efficient estimation, bayesian networks, acyclic digraphs, selection
Identifikatorer
URN: urn:nbn:se:kth:diva-17890DOI: 10.1007/s10618-008-0099-9ISI: 000260065200004Scopus ID: 2-s2.0-54249168561OAI: oai:DiVA.org:kth-17890DiVA: diva2:335935
Merknad
QC 20100525Tilgjengelig fra: 2010-08-05 Laget: 2010-08-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Koski, Timo

Søk i DiVA

Av forfatter/redaktør
Koski, Timo
Av organisasjonen
I samme tidsskrift
Data mining and knowledge discovery

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 39 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf